

# PON GOVERNANCE 2014-2020 Rischio Sismico e Vulcanico

Attività SIC\_F5.1 | Supporto per il coordinamento fra le strutture tecniche della Regione e gli altri Enti coinvolti;definizione di procedure standard e produzione della documentazione tecnica da adottare

Attività di supporto sviluppate nella Regione Siciliana

Versione 1.1

Pubblicato in data 24/01/2022















# PON GOVERNANCE 2014-2020 Rischio Sismico e Vulcanico

Attività SIC\_F5.1 | Supporto per il coordinamento fra le strutture tecniche della Regione e gli altri Enti coinvolti;definizione di procedure standard e produzione della documentazione tecnica da adottare

### Attività di supporto sviluppate nella Regione

#### Siciliana

#### Versione 1.1

Pubblicato in data 24/01/2022













#### PON GOVERNANCE E CAPACITÀ ISTITUZIONALE 2014-2020

PROGRAMMA PER IL SUPPORTO AL RAFFORZAMENTO DELLA GOVERNANCE IN MATERIA DI RIDUZIONE DEL RISCHIO SISMICO E VULCANICO AI FINI DI PROTEZIONE CIVILE

#### DIPARTIMENTO DELLA PROTEZIONE CIVILE

#### Struttura responsabile dell'attuazione del Programma

Fabrizio Curcio (responsabile), Eliana Mazzaro (supporto)

Immacolata Postiglione (delega funzioni specifiche)

Unità di coordinamento

Fabrizio Bramerini, Angelo Corazza, Luigi D'Angelo, Fausto Guzzetti, Francesca Romana Paneforte, Paola Stefanelli

Unità operativa rischi

Paola Bertuccioli, Sergio Castenetto, Stefano Ciolli, Andrea Duro, Emilio De Francesco, Marco Falzacappa, Domenico Fiorito, Pietro Giordano, Antonella Gorini, Giuseppe Naso, Stefania Renzulli, Daniele Spina

Unità di raccordo DPC

Silvia Alessandrini, Sara Babusci, Pierluigi Cara, Patrizia Castigliego, Valter Germani, Maria Penna

Unità amministrativa e finanziaria

Valentina Carabellese, Francesca De Sandro, Susanna Gregori, Maria Cristina Nardella

Hanno fatto parte della struttura

Angelo Borrélli, Gabriella Carunchio, Luciano Cavarra, Pietro Colicchio, Biagio Costa, Lavinia Di Meo, Gianluca Garro, Antonio Gioia, Francesca Giuliani, Italo Giulivo, Fabio Maurano, Natale Mazzei, Agostino Miozzo, Paolo Molinari, Anna Natili, Roberto Oreficini Rosi, Lucia Palermo, Simona Palmiero, Ada Paolucci, Sara Petrinelli, Biagio Prezioso, Umberto Rosini, Marco Rossitto, Sisto Russo, Chiara Salustri Galli, Maria Siclari, Maurilio Silvestri, Gianfranco Sorchetti, Vincenzo Vigorita

#### REGIONI

#### Referenti

Basilicata: Claudio Berardi, Antonella Belgiovine, Maria Carmela Bruno, Cinzia Fabozzi, Donatella Ferrara, Cosimo Grieco, Guido Loperte (coordinatore), Alfredo Maffei, Pietro Perrone; Calabria: Fortunato Varone (coordinatore); Campania: Mauro Biafore (coordinatore), Claudia Campobasso, Luigi Cristiano, Emilio Ferrara, Luigi Gentilella, Maurizio Giannattasio, Francesca Maggiò, Celestino Rampino; Puglia: Tiziana Bisantino (coordinatore), Carlo Caricasole, Domenico Donvito, Franco Intini, Teresa Mungari, Fabrizio Panariello, Francesco Ronco, Zoida Tafilaj; Sicilia: Giuseppe Basile, Antonio Brucculeri, Aldo Guadagnino, Maria Nella Panebianco, Antonio Torrisi

Sono stati referenti

Basilicata: Alberto Caivano; Calabria: Giuseppe Iiritano, Domenico Pallaria, Francesco Russo (coordinatore), Carlo Tansi, Luigi Giuseppe Zinno; Puglia: Giuseppe Tedeschi; Campania: Crescenzo Minotta; Sicilia: Nicola Alleruzzo

#### Affidamento di servizi del DPC al CNR-IGAG

Responsabile Unico del Procedimento: Mario Nicoletti

Direttore di Esecuzione Contrattuale: Fabrizio Bramerini

Referenti rischio sismico: Fabrizio Bramerini, Sergio Castenetto, Daniele Spina, Antonella Gorini, Giuseppe Naso

Referente rischio vulcanico: Stefano Ciolli

Referenti pianificazione di emergenza: Domenico Fiorito, Stefania Renzulli

#### CNR-IGAG (operatore economico rischio sismico e vulcanico)

Massimiliano Moscatelli (referente)

Struttura di coordinamento

Gianluca Carbone, Claudio Chiappetta, Francesco Fazzio, Massimo Mari, Silvia Massaro, Federico Mori, Edoardo Peronace, Attilio Porchia, Francesco Stigliano (coordinatore operativo)

Struttura tecnica

Angelo Anelli, Massimo Cesarano, Eleonora Cianci, Stefania Fabozzi, Gaetano Falcone, Cora Fontana, Angelo Gigliotti, Michele Livani, Amerigo Mendicelli, Giuseppe Occhipinti, Federica Polpetta, Alessandro Settimi, Rose Line Spacagna, Daniel Tentori, Valentina Tomassoni

Struttura gestionale

Lucia Paciucci (coordinatrice gestionale), Francesca Argiolas (supporto gestionale), Federica Polpetta (supporto gestionale), Francesco Petracchini Revisori

Emilio Bilotta, Paolo Boncio, Paolo Clemente, Maria Ioannilli, Massimo Mazzanti, Roberto Santacroce, Carlo Viggiani

Supporto tecnico-amministrativo

Francesca Argiolas, Patrizia Capparella, Martina De Angelis, Marco Gozzi, Alessandro Leli, Patrizia Mirelli, Simona Rosselli

Hanno fatto parte della struttura

Raffaela Ciuffreda, Giuseppe Cosentino, Melissa Di Salvo, Giovanni Di Trapani, Rosa Marina Donolo, Carolina Fortunato, Biagio Giaccio, Marco Modica, Marco Nocentini, Andrea Rampa, Laura Ragazzi, Gino Romagnoli, Paolo Tommasi, Vitantonio Vacca

## SIC F 5.1 Supporto per il coordinamento fra le strutture tecniche della Regione e gli altri Enti coinvolti; definizione di procedure standard e produzione della documentazione tecnica da adottare.

Responsabile DPC: Daniele Spina, Fabrizio Bramerini Responsabile CNR-IGAG: Attilio Porchia

#### A cura di

Eleonora Cianci, Michele Livani, Giuseppe Occhipinti, Attilio Porchia (CNR-IGAG)

versione colophon 06/12/2021

# **Sommario**

| 1  | Le fasi del progetto                                                                                                                                      | 6    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2  | Il percorso per la definizione dei Contesti Territoriali nella Regione Siciliana                                                                          | 9    |
| 3  | Individuazione dei sistemi per la gestione dell'emergenza. La CLE di CT dei CT sperimentali                                                               | 12   |
|    | 3.1 Grafo Ottimale del Contesto Territoriale e software GOCT                                                                                              | 15   |
| 4  | Valutazione dell'operatività strutturale del Contesto Territoriale.                                                                                       | 15   |
| 5  | Valutazione dell'operatività non strutturale nei contesti territoriali sperimentali                                                                       | 17   |
| 6  | Analisi per la programmazione di interventi di miglioramento dell'operatività                                                                             | 21   |
| 7  | Altre attività di affiancamento svolte nella Regione Siciliana                                                                                            | 22   |
|    | 7.1 Affiancamento al piano regionale di Microzonazione Sismica                                                                                            | 22   |
| 8  | Bibliografia                                                                                                                                              | 28   |
| Αl | LLEGATO 1: Buone pratiche per la gestione dell'emergenza in caso di caduta di ceneri vulcaniche                                                           |      |
|    | LLEGATO 2: Requisiti minimi per la redazione dello Studio preliminare per il piano di protezione civile comunale in asse<br>el Piano di protezione civile | enza |
| Αl | LLEGATO 3: Check-list di verifica studi di Microzonazione Sismica e CLE con istruttorie di esempio                                                        |      |

Versione 1.1

### **DEFINIZIONI**

Condizione Limite per l'Emergenza (CLE) - Condizione fino al cui raggiungimento, a seguito del manifestarsi dell'evento sismico, pur in concomitanza con il verificarsi di danni fisici e funzionali tali da condurre all'interruzione delle funzioni urbane presenti, compresa la residenza, l'insediamento urbano conserva comunque, nel suo complesso, l'operatività della maggior parte delle funzioni strategiche per fronteggiare l'emergenza, la loro accessibilità e connessione con il contesto territoriale.

Centro Operativo Misto (COM) - Centro di coordinamento dell'emergenza, di livello intercomunale. Il COM è ubicato in un Comune (sede COM), cui afferisce un determinato bacino di Comuni di competenza (area COM).

Comune Capoluogo SLL - Comune caratterizzato dal più alto numero di posti di lavoro all'interno del SLL. Esso attribuisce la denominazione al Sistema Locale del Lavoro di cui è Capoluogo. Comune polo SLL - Comune che, nella geografia dei SLL, ha indice di centralità maggiore di uno ed almeno 100 occupati residenti. L'indice di centralità misura il rapporto tra la domanda e l'offerta di lavoro del Comune, calcolato al netto degli spostamenti che hanno origine e destinazione nel Comune stesso; tale indicatore assume valore superiore all'unità quando il numero di pendolari in entrata (domanda) eccede il numero di quelli in uscita (offerta), indicando che il Comune svolge un ruolo di attrazione in termini di flussi pendolari (Istat, 2014).

Comune di Riferimento (CR) – Comuni identificati come realtà urbane rilevanti per il contesto al quale appartengono e che assumono un carattere prioritario ai fini della programmazione degli interventi.

Contesto Territoriale (CT) - Insieme di aree limitrofe che cooperano sul tema della riduzione del rischio e nelle quali le attività possono essere esercitate in modo unitario tra più municipalità (Accordo di Partenariato Italia 2014 – 2020).

**Microzonazione Sismica (MS)** - Suddivisione di un territorio a scala comunale in aree a comportamento omogeneo sotto il profilo della risposta sismica locale, prendendo in considerazione le condizioni geologiche, geomorfologiche, idrogeologiche in grado di produrre fenomeni di amplificazione del segnale sismico e/o deformazioni permanenti del suolo (frane, liquefazioni, cedimenti e assestamenti) (ICMS, 2008).

Sistemi Locali del Lavoro (SLL) - "I luoghi, precisamente identificati e simultaneamente delimitati su tutto il territorio nazionale, dove la popolazione risiede e lavora e dove quindi indirettamente tende ad esercitare la maggior parte delle proprie relazioni sociali ed economiche" (Istat, 2014; pag. 2). I SLL sono quindi aree funzionali che, costruite utilizzando i flussi degli spostamenti casa-lavoro (pendolarismo giornaliero), si caratterizzano per l'auto-contenimento delle attività e delle relazioni sul territorio.

**Tempo di ritorno (tr)** - Frequenza nel tempo dell'evento di protezione civile. Tempo medio che intercorre tra due occorrenze successive di un evento di un certo tipo e di una data intensità.

Unioni dei Comuni (UC) - "L'unione di comuni è l'ente locale costituito da due o più comuni, di norma contermini, finalizzato all'esercizio associato di funzioni e servizi. Ove costituita in prevalenza da comuni montani, essa assume la denominazione di unione di comuni montani e può esercitare anche le specifiche competenze di tutela e di promozione della montagna attribuite in attuazione dell'articolo 44, secondo comma, della Costituzione e delle leggi in favore dei territori montani" (Decreto legislativo n. 267 del 18 agosto 2000, Art. 32). Le Unioni dei Comuni sono pertanto aggregazioni di Comuni che condividono una o più funzioni o servizi con l'obiettivo di ottimizzarne l'efficacia e l'efficienza.

Zone di allerta (ZA) - Ambiti territoriali omogenei rispetto al tipo e all'intensità dei fenomeni meteo-idro che si possono verificare e dei loro effetti sul territorio. Esse vengono individuate ai fini delle attività di previsione e prevenzione, suddividendo e/o aggregando i bacini idrografici di competenza regionale, o parti di essi.

#### SIGLE

CLE Condizione Limite per l'Emergenza

COM Centro Operativo Misto
CR Comune di Riferimento
CT Contesto Territoriale

**DPC** Dipartimento della Protezione Civile

MS Microzonazione Sismica
SLL Sistema Locale del Lavoro
Tompo di Ritorro

TR Tempo di Ritorno
UC Unione di Comuni
ZA Zone di Allerta

## 1 Le fasi del progetto

L'attuale strategia di mitigazione del rischio sismico ai fini di protezione civile ("Standard minimi per la programmazione degli interventi in materia di riduzione del rischio ai fini di protezione civile - e di resilienza socio-territoriale" predisposti dal Dipartimento della protezione civile, con l'Agenzia per la coesione territoriale e concertato con la Struttura di Missione contro il dissesto idrogeologico per gli ambiti di competenza, 17 dicembre 2015), prevede un percorso metodologico ben determinato e la raccolta ed elaborazione di dati e informazioni che possono costituire la base di partenza per ulteriori politiche finalizzate alla mitigazione del rischio sismico, in particolare nell'ottica della sicurezza abitativa, della cura del territorio e delle aree urbane all'interno del Paese.

La strategia di riduzione del rischio sismico ai fini di protezione civile degli "standard minimi" è stata predisposta in coerenza con quanto previsto dall'Accordo di partenariato Italia 2014-2020 per quanto riguarda l'Obiettivo Tematico 5 (Promuovere l'adattamento al cambiamento climatico, la prevenzione e la gestione dei rischi). Essa è finalizzata ad assicurare un minimo livello standard di sicurezza del territorio ed a rafforzare la capacità istituzionale e rendere efficiente l'azione delle Regioni per la riduzione del rischio sismico vulcanico e idrogeologico ai fini di protezione civile.

Il percorso attuativo adottato si è articolato in sei fasi (Tabella 1-1):

- 1. Analisi dei fabbisogni e individuazione dei contesti territoriali
- 2. Analisi di Pericolosità
- 3. Analisi ed eventuale aggiornamento dei Piani di emergenza
- 4. Valutazione operatività del sistema di risposta in caso di emergenza
- 5. Programmazione degli interventi di mitigazione delle condizioni di rischio e per il miglioramento dell'operatività del sistema di gestione dell'emergenza
- 6. Valutazione complessiva dell'efficacia degli interventi

| FASE 1                                              | FASE 2                     | FASE 3            | FASE 4                            | FASE 5                       | FASE 6                      |
|-----------------------------------------------------|----------------------------|-------------------|-----------------------------------|------------------------------|-----------------------------|
| Individuazione<br>dei Contesti<br>Territoriali (CT) | Analisi di<br>Pericolosità | Analisi dei Piani | Valutazione<br>operatività del CT | Programmazione<br>interventi | Monitoraggio e<br>Verifiche |

Tabella 1-1 Le fasi del Progetto

L'intero percorso, pensato e realizzato secondo una struttura modulare, ha previsto all'interno di ogni fase l'elaborazione di basi dati e realizzazione di prodotti e linee guida propedeutiche alle fasi successive nonché la loro applicazione sperimentale nelle 5 Regioni coinvolte.

Nella **fase 1** vengono quantificati i fabbisogni relativi all'obiettivo generale e vengono definiti i Contesti Territoriali su cui operare. In altre parole, viene definita la dimensione territoriale migliore per la gestione delle emergenze e per la mitigazione dei rischi. La programmazione deve avere, come presupposto, cooperazione tra aree territoriali limitrofe (Contesti Territoriali),

in cui le attività di pianificazione e conseguente gestione dell'emergenza si possono esercitare in modo unitario, o in cui vi sia una sostanziale omogeneità di gestione del rischio, inteso nelle sue fasi di previsione, prevenzione e mitigazione, nonché nelle sue attività di tipo strutturale e non strutturale. Le informazioni e i dati utilizzati fanno principalmente riferimento ai Sistemi Locali del Lavoro (Istat, 2011), alle Unioni di comuni e ai Centri Operativi Misti (Direttiva DPC n. 1099 del 31.03.2015). L'intera metodologia per la definizione dei CT, i criteri utilizzati, e i dati di base utilizzati, sono descritti in un'apposita linea guida che è stata realizzata (Report A1.1 "Linee Guida CT e CR parte prima e parte seconda" e report regionali BAS, CAL, CAM, PUG, SIC - F1.1) e i cui principi sono richiamati nella direttiva piani pubblicata il 30 aprile 2021. Oltre a ciò, la definizione di una dimensione territoriale fisica, rappresenta insieme a quella organizzativa una delle componenti su cui si fondano gli Ambiti Territoriali definiti nel Dlgs. 1/2018 "Codice della protezione civile".

Nella **fase 2**, i contesti territoriali definiti sono stati analizzati dal punto di vista della pericolosità sismica, seguendo un processo che parte dalla pericolosità sismica di base e attraverso la valutazione degli effetti di amplificazione conduce alla definizione dello scuotimento atteso in corrispondenza degli oggetti del sistema minimo di gestione dell'emergenza del CT. Nelle valutazioni si tiene conto anche degli effetti sismoindotti che possono interferire con il sistema di gestione dell'emergenza come ad esempio le frane ed i fenomeni di liquefazione dinamica. Anche in questa fase, sono stati predisposti una serie di prodotti propedeutici alle analisi da compiere nelle fasi successive, alcuni dei prodotti sono stati oggetto di pubblicazioni scientifiche e sono state realizzate delle apposite linee guida a supporto delle Regioni (Report A2.1, A2.2, A2.3, A2.4).

Nella fase 3 è stata effettuata una specifica analisi finalizzata alla valutazione dell'operatività dei piani di emergenza attraverso il rilevamento di tutti gli elementi strutturali non strutturali che concorrono alla gestione dell'emergenza post-evento. In linea con quanto espresso dal Codice di protezione civile (Dlgs 1/2018), secondo il quale la prevenzione rappresenta "l'insieme delle attività di natura strutturale e non strutturale [...] dirette a evitare o a ridurre la possibilità che si verifichino danni conseguenti a eventi calamitosi anche sulla base delle conoscenze acquisite per effetto delle attività di previsione", in questa fase vengono definiti sia gli elementi strutturali all'interno del CT, sia gli elementi non strutturali, ovvero l'insieme di tutte le risorse e delle procedure organizzative che servono alla corretta gestione dell'emergenza. Per quanto riguarda la componente strutturale è stata realizzata una LG per l'individuazione degli elementi strutturali minimi del CT (CLE di CT) (Report CAM, PUG, SIC - F4.1 – Linee Guida Individuazione Elementi Strutturali minimi del Contesto Territoriale - LG CLE di CT) la quale fornisce riferimenti e criteri per l'individuazione degli elementi fisici – edifici, aree, infrastrutture – che compongono il Sistema di gestione dell'emergenza del Contesto Territoriale (individuato come Sistema strutturale minimo di CT), operazione indispensabile e preliminare alla valutazione dell'operatività del Sistema tramite la determinazione dell'indice IOCT. Gli elementi sono selezionati tra quanto individuato nelle analisi CLE comunali e, in alcune specifiche condizioni, dagli strumenti di pianificazione e programmazione regionali. Le procedure descritte nelle Linee guida sono finalizzate a verificare la presenza e l'adeguatezza degli elementi strutturali minimi indispensabili per la gestione dell'emergenza a scala di Contesto Territoriale.

Per quanto riguarda la **componente non strutturale**, in conformità a quanto riportato nella Direttiva Piani - "Indirizzi nazionali per la predisposizione dei piani di protezione civile ai diversi livelli territoriali" - con lo scopo di rilevare tutte le informazioni riguardanti l'organizzazione, le procedure operative e le risorse disponibili attraverso una rilettura dei Piani di protezione civile, è stata realizzata una scheda di rilevamento (scheda PPC) (Report A3.2), compilabile attraverso una piattaforma web (webPPC – sistema per l'analisi dei Piani di Protezione Civile). L'analisi permette di avere un primo quadro orientativo sul livello qualitativo dei PPC, sulla distribuzione delle componenti non strutturali tra i Comuni appartenenti allo stesso CT, nonché di giungere ad una valutazione preliminare dei PPC analizzati (Fase 4 - Report A4.3).

Nella fase 4 vengono messi a sistema le elaborazioni e i prodotti realizzati nelle fasi precedenti per giungere ad una misura della capacità operativa e prestazionale del Contesto Territoriale in risposta ad un evento sismico e vulcanico. Anche in questo caso, le valutazioni vengono fatte sia sulle componenti strutturali che su quelle non strutturali. Nel primo caso, la **valutazione dell'operatività strutturale** segue un percorso classico di valutazione delle componenti di pericolosità di base e locale (Report A4.1 LG dell'Indice di Operatività strutturale del Contesto Territoriale - LG *IOCT*), di valutazione degli elementi esposti (Report A4.1 LG CLE-CT e *soft*GOCT) e della vulnerabilità (Report regionali BAS F4.2; CAL, CAM, PUG, SIC – F4.3) per giungere al calcolo dell'Indice di Operatività strutturale del Contesto Territoriale (IOCT) e della Classe di Operatività del CT (COCT) (Report A4.1 – LG dell'Indice di Operatività strutturale del Contesto Territoriale e report regionali BAS, CAL, CAM, PUG – F4.2; SIC F4.4).

La valutazione non strutturale parte dall'analisi dei Piani eseguita mediante la scheda di analisi (Fase 3 Report A3.2) a seguito della quale si definiscono criteri e metodi per la valutazione della pianificazione di emergenza comunale ed intercomunale. Sulla base delle misure rilevate attraverso la scheda PPC si definiscono punteggi e pesi da associare ad ognuno degli elementi rilevati in modo da classificare il Piano in termini di completezza e coerenza quantificati attraverso l'Indice di Qualità dei Piani (Report A4.3). I valori per singolo Piano, ovvero per singolo Comune, sono successivamente aggregati per Contesto Territoriale al fine di avere una valutazione dello stato della pianificazione di protezione civile e della capacità organizzativa a scala di CT.

Nella **fase 5** sono stati definiti modelli e metodologie convenzionali per valutare il miglioramento dell'Operatività del sistema di gestione dell'emergenza di un Contesto Territoriale. In particolare sono definiti modelli di mitigazione/intervento per ogni singolo oggetto del sistema con la finalità di produrre scenari di miglioramento/passaggio di classe di operatività COCT (Report A4.1 - Linee Guida dell'Indice di Operatività strutturale del Contesto Territoriale) e quantificazione di massima della spesa economica associata al suddetto passaggio di classe. Gli interventi di mitigazione sono riferibili alle macro categorie di elementi costituenti il sistema di gestione dell'emergenza, nella fattispecie agli Edifici Strategici per il coordinamento, per il soccorso operativo ed il soccorso sanitario, alle infrastrutture di connessione per possibili interruzioni di servizio per frane, liquefazione, ricaduta di cenere vulcanica o per crollo di edifici interferenti. Agli interventi tipologici sono successivamente associati i costi parametrici per la valutazione economica del miglioramento dei singoli oggetti e, quindi, dell'intero sistema di gestione dell'emergenza (Report A4.1 - Linee Guida dell'Indice di Operatività strutturale del Contesto Territoriale). La combinazione delle diverse strategie di miglioramento adottabili insieme ad alla valutazione in termini di benefici/costi degli interventi, rappresentano un utile strumento decisionale per la programmazione di interventi strutturali di miglioramento della capacità operativa del sistema di gestione dell'emergenza del Contesto territoriale.

La **fase 6**, rappresenta la fase di monitoraggio e verifica che si realizza mediante il calcolo di tutta una serie di indicatori, dal livello comunale a quello di Contesto Territoriale (Report regionali BAS, CAL, CAM, PUG, SIC – F6.1), che sono diagnostici dello stato di efficienza, delle risorse fisiche e organizzative disponibili e del contesto fisico/antropico (scenario) del CT analizzato, per giungere a valutazioni della performance del sistema di gestione delle emergenze (Report di progetto A6.1). Per la consultazione degli indicatori è stato progettato e realizzato (Report di progetto A6.2; A6.3) un sistema di visualizzazione su piattaforma web raggiungibile al link http://indicatori.govrisv.cnr.it.

Nel presente documento sono sintetizzate le principali attività svolte dalla Struttura Tecnica di Supporto (STS) per la Regione Siciliana che hanno portato alla definizione dei Contesti Territoriali nella Regione ed all'applicazione sperimentale delle metodologie.

# 2 Il percorso per la definizione dei Contesti Territoriali nella Regione Siciliana

Come previsto dalla fase 1 della struttura del programma PON, la metodologia per l'individuazione dei *Contesti Territoriali* (CT) e dei relativi *Comuni di Riferimento* (CR)¹ (Report di progetto A1.1 "Linee Guida CT e CR parte prima" e "parte seconda" applicazione alla Regione Siciliana), prende in considerazione le Unioni di Comuni, le aree afferenti ai Centri Operativi Misti (COM) e i Sistemi Locali del Lavoro (Istat, 2011), analizzando le relazioni esistenti, sia in termini di perimetrazione che di Comuni "rilevanti", ed effettua verifiche in termini di raggiungibilità della popolazione, con il sistema dei limiti amministrativi delle province e delle aree metropolitane, con le zone di allerta, con i bacini idrografici e con alcune mappe di pericolosità.

Il processo, distinto in 4 fasi (Figura 2-1), parte dalla geografia dei SLL 2011, i quali vengono analizzati in base ai confini regionali e alla popolazione residente (Fase A); si prosegue con la verifica di coerenza con le Unioni di Comuni, la coerenza con il valore standard di 30.000-35.000 abitanti, previsto dalla Direttiva n. 1099 del 31.03.2015 per l'individuazione dei Centri Operativi Misti e l'eventuale utilizzo del sistema dei COM per ulteriori definizioni dei confini (Fase B); quindi vengono individuati i CR (Fase C). Seguono le verifiche circa il "tempo di percorrenza", ossia la raggiungibilità dei territori all'interno dei Contesti Territoriali, in linea con quanto previsto dalla Direttiva n. 1099 del 31.03.2015 per il raggiungimento delle aree afferenti ad una sede COM e le verifiche di sovrapposizione con altri sistemi territoriali: i limiti amministrativi provinciali e delle aree metropolitane, le zone di allerta, i bacini idrografici e alcune mappe di pericolosità (Fase D).

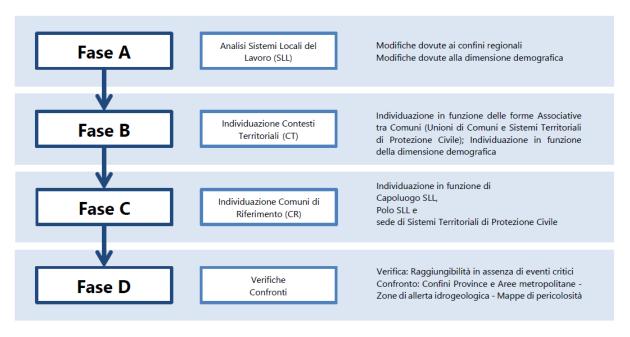



Figura 2-1 Schema riassuntivo della metodologia di individuazione dei CT e dei relativi CR.

Versione 1.1

<sup>&</sup>lt;sup>1</sup> I Comuni di Riferimento (CR) sono identificati come realtà urbane rilevanti per il contesto al quale appartengono e che quindi assumono un carattere prioritario ai fini della programmazione degli interventi, a partire dalle principali geografie dei sistemi territoriali esistenti a livello nazionale e regionale.

Il processo di definizione dei Contesti Territoriali nella Regione Siciliana, si è svolto attraverso la stretta collaborazione tra la STS del CNR-IGAG, i referenti del Dipartimento della Protezione Civile Nazionale ed il *GdL* regionale. Nel corso delle diverse riunioni intercorse sono stati ampiamente discussi i criteri di base per la definizione delle aggregazioni di Comuni, e messi a confronto con ipotesi alternative suggerite dalla *GdL* regionale. Il costruttivo e continuo confronto ha permesso in alcuni casi di modificare e adattare i criteri di base della metodologia per la definizione dei CT (Report A1.1 "Linee Guida CT e CR parte prima") alle esigenze ed alle condizioni territoriali riscontrate nella Regione. La prima configurazione dei CT per la regione fu presentata il 29 gennaio 2020 (Figura 2-2) a seguito della quale, gli ulteriori confronti con il *GdL* regionale nonché le osservazioni pervenute da parte dei Comuni chiamati ad esprimere il loro parere, hanno portato ad ulteriori modifiche della configurazione proposta. Le principali osservazioni furono:

- il superamento, in alcuni contesti, del limite provinciale;
- l'individuazione di Comuni di riferimento diversi rispetto a quelli dei C.U.O.R.E.
- n. 5 comuni (Corleone, Licata, Adrano, Sant'Agata di Militello, Nicosia) espressero parere positivo sulla perimetrazione proposta
- n.11 comuni inviarono una proposta di modifica dei perimetri.

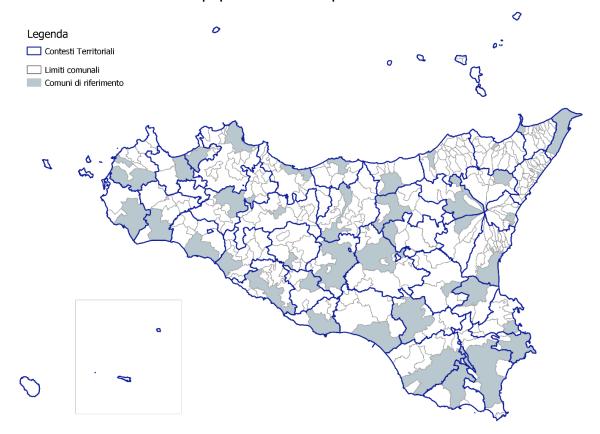



Figura 2-2 I 41 Contesti territoriali e Comuni di riferimento (versione 2020)

In data 30 novembre 2020, in un incontro congiunto Dipartimento della protezione civile - Regione Siciliana è stato stabilito di modificare i CT a cavallo tra due province recependo quanto previsto dalla Direttiva Piani pubblicata il 30 aprile 2021 e di verificare la possibilità di sub-ripartire i Contesti Territoriali delle aree metropolitane, e più in generale dei CT dei capoluoghi di provincia, rendendo, là dove possibile, autonomi i capoluoghi di provincia dalla restante parte di Comuni. In particolare le principali modifiche richieste hanno riquardato:

- Modifiche dei CT in funzione dei limiti provinciali
- Modifiche dei CR in funzione dei nuovi perimetri
- Sub ripartizione dei CT di Catania e Palermo
- Modifiche dei CT in funzione delle Unioni dei Comuni

L'esito finale di tali modifiche ha portato ad una ridefinizione dei CT che sono passati dai 41 precedenti (v. 2020) agli attuali 47 (Figura 2-3).

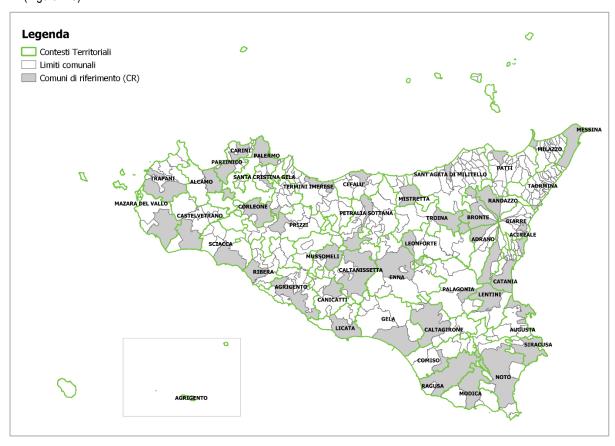



Figura 2-3 Contesti Territoriali e Comuni di Riferimento della Regione Siciliana (versione finale)

Per la descrizione dettagliata dell'applicazione della metodologia di definizione dei CT e CR per la Regione Siciliana, si rimanda al Report di progetto SIC F1.1.

# 3 Individuazione dei sistemi per la gestione dell'emergenza. La CLE di CT dei CT sperimentali

Tale attività si colloca nell'ambito delle attività previste dalla fase 3 del PON, dedicata all'analisi della Condizione limite per l'emergenza, ed ha l'obiettivo di definire gli elementi di base per la fase 4 (valutazione dell'operatività del sistema strutturale di gestione dell'emergenza sismica del Contesto Territoriale). In particolare il sistema di gestione dell'emergenza di un CT Territoriale (individuato come Sistema strutturale minimo di CT) comprende gli elementi fisici – edifici, aree, infrastrutture – (Figura 3-1) funzionali ad assicurare la gestione dell'emergenza nel CT stesso in caso di evento sismico. La gestione dell'emergenza viene individuata sulla base di quanto deriva dalla definizione di CLE e alla luce delle definizioni del Dlgs 1/2018 ed è qui intesa solo per quanto compete agli elementi strutturali, limitandosi a identificare gli elementi fisici che permettono di svolgere le funzioni essenziali per la gestione dell'emergenza stessa e la cui individuazione è mutuata dai principi di base dell'analisi della CLE comunale. Gli elementi sono selezionati tra quanto individuato nelle analisi CLE comunali e, in alcune specifiche condizioni, dagli strumenti di pianificazione e programmazione regionali (Report di progetto SIC F4.4).

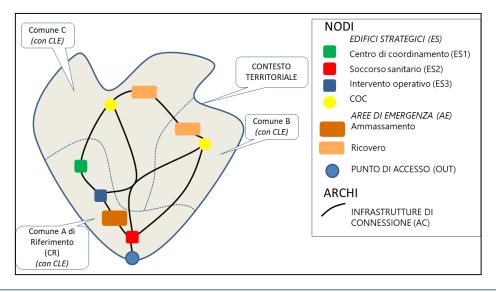



Figura 3-1 II portafoglio degli oggetti costituenti il sistema di emergenza strutturale del CT

I criteri ed i riferimenti da seguire per l'individuazione degli elementi fisici sono forniti dalle "Linee Guida Individuazione Elementi Strutturali minimi del Contesto Territoriale (CLE di CT)" (Report di progetto SIC F4.1 LG CLE-CT), nella quale la procedura descritta è finalizzata a verificare la presenza e l'adeguatezza degli elementi strutturali minimi indispensabili per la gestione dell'emergenza a scala di Contesto Territoriale. Nella LG non si definisce un percorso progettuale, ma, in primo luogo, una modalità di selezione critica degli elementi individuati nei documenti già esistenti. In ogni caso, sono fornite indicazioni per individuare ex novo eventuali elementi essenziali mancanti o inadeguati.

Nella fattispecie il sistema minimo di gestione dell'emergenza di un CT comprende (Figura 3-1):

- Edifici strategici (ES);
- Aree per l'emergenza (AE);
- Infrastrutture di accessibilità e connessione (AC).

- Per Edifici strategici rilevanti alla scala di CT si intendono gli edifici ospitanti funzioni strategiche fondamentali, come individuati nell'articolo 18 dell'OPCM 4007:
  - Edificio di coordinamento interventi a scala di CT (ES1 di CT) individuato nel Comune di Riferimento del CT (CR);
  - Edificio per il soccorso sanitario (ES2) di riferimento per il CT;
  - Edificio per l'intervento operativo (ES3 Vigili del Fuoco) di riferimento per il CT;
  - Edifici con funzione di coordinamento degli interventi comunali (Centri Operativi Comunali COC) dei comuni appartenenti al CT

Per gli ES, quindi, sono considerati: 3 edifici strategici fondamentali per l'intero CT oltre ad un numero di ES1 comunali pari al numero dei Comuni del CT diversi dal CR.

- Per Aree di emergenza, in questo ambito, si intendono:
  - un'area di ammassamento del CT;
  - un'area di ricovero per ognuno dei Comuni appartenenti al CT.
- Per Infrastrutture di accessibilità e connessione si indicano:
  - le infrastrutture di connessione tra gli elementi ES e AE definiti ai punti precedenti (AC\_conn);
  - le infrastrutture di accessibilità al / dal CT rispetto alla viabilità territoriale superiore (AC acc).

Per la **Regione Siciliana** il primo Contesto Territoriale Pilota selezionato per le applicazioni sperimentali è Il **CT di Lentini** (SR). Per ogni elemento (ES, AE) è stata effettuata una verifica preliminare sulla base degli indirizzi forniti dalle Linee Guida della CLE di CT (Report di progetto SIC F4.1 Linee Guida Individuazione Elementi Strutturali minimi del Contesto Territoriale – LG CLE di CT). Nello specifico sono state effettuate delle verifiche rispetto ai seguenti ambiti:

- A. Instabilità
- B. Funzione
- C. Requisiti funzionali
- D. Condizioni d'uso e disponibilità
- E. Proprietà e vincoli

Con il medesimo scopo di fornire una rappresentazione esaustiva e completa degli Edifici Strategici e delle Aree di Emergenza dell'intero Contesto Territoriale, le tabelle di seguito riportano l'esito delle verifiche dei requisiti condotte (Tabella 3-1,Tabella 3-2).

|                            | REQUISITI LINEE GUIDA PER LA SELEZIONE DEGLI EDIFICI DEL SGE |          |               |               |               |  |  |  |
|----------------------------|--------------------------------------------------------------|----------|---------------|---------------|---------------|--|--|--|
| EDIFICIO                   | Α                                                            | В        | С             | D             | E             |  |  |  |
| ES 001 del CR              | <b>V</b>                                                     | <b>√</b> | Da verificare | Da verificare | Da verificare |  |  |  |
| ES 002 del CT              | V                                                            | <b>√</b> | Da verificare | Da verificare | Da verificare |  |  |  |
| ES 003 del CT              | V                                                            | √        | Da verificare | Da verificare | Da verificare |  |  |  |
| ES 001 del CT (Carlentini) | 1                                                            | <b>V</b> | Da verificare | Da verificare | Da verificare |  |  |  |

| ES 001 del CT (Francofonte) | V | √ | Da verificare | Da verificare | Da verificare |
|-----------------------------|---|---|---------------|---------------|---------------|
|                             |   |   |               |               |               |

Tabella 3-1 Verifica dei requisiti degli ES da LG CLE di CT

|                             | REQUISITI LINEE GUIDA PER LA SELEZIONE DELLE AREE DI EMERGENZA DEL SGE |          |     |               |               |  |  |
|-----------------------------|------------------------------------------------------------------------|----------|-----|---------------|---------------|--|--|
| AREE DI EMERGENZA           | Α                                                                      | В        | С   | D             | E             |  |  |
| AE_Amm del CT (Lentini)     | √                                                                      | √        | √   | Da verificare | Da verificare |  |  |
| AE_ric del CT (Carlentini)  | <b>√</b>                                                               | <b>√</b> | √ √ | Da verificare | Da verificare |  |  |
| AE_ric del CT (Francofonte) | <b>√</b>                                                               | √        | √   | Da verificare | Da verificare |  |  |

Tabella 3-2 Verifica dei requisiti delle AE da LG CLE di CT

#### In Figura 3-2 è riportato il Sistema strutturale minimo del CT di Lentini.

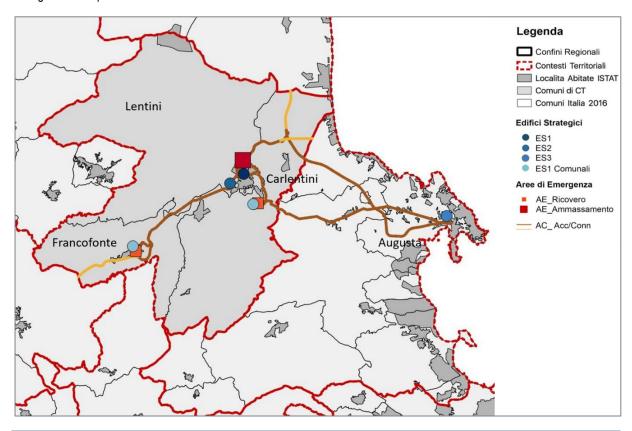



Figura 3-2 Grafo della CLE di CT di "Lentini"

#### 3.1 Grafo Ottimale del Contesto Territoriale e software GOCT

GOCT è un software realizzato con lo scopo di automatizzare la costruzione del grafo del sistema minimo di gestione dell'emergenza per un Contesto Territoriale implementando i criteri definiti e riportati nelle Linee Guida per la costruzione della CLE di CT (Report di progetto SIC F4.1 Linee Guida Individuazione Elementi Strutturali minimi del Contesto Territoriale – LG CLE di CT). In Particolare il software, partendo dai nodi strategici della rete di emergenza – edifici, aree, nodi di accesso al CT – e dalle infrastrutture di connessioni ed accessibilità presenti negli studi di CLE Comunali, è in grado costruire un grafo ottimale di connessione tra gli elementi in relazione a variabili quali: i) il tempo di percorrenza; ii) percorsi ridondanti; iii) tempo di rientro, ovvero il tempo necessario a collegare 2 nodi simulando interruzioni stradali; iv) interruzioni per pericolosità sismica, vulcanica, idrogeologica (gravo ottimale multi-pericolosità). Per approfondimenti si rimanda ai report di progetto A4.1 LG IOCT; SIC F4.4. con gli esempi di grafo ottimale per i CT pilota della Regione Siciliana.

# 4 Valutazione dell'operatività strutturale del Contesto Territoriale.

Nell'ambito della fase 4 del PON *Governance*, rischio sismico e vulcanico, all'individuazione dei Contesti Territoriali Regionali (§2), ed alla selezione del CT pilota (§0) sul quale avviare le attività di sperimentazione, ha fatto seguito la "valutazione di operatività strutturale" che comprende le seguenti componenti e fasi, ognuna declinata attraverso uno specifico modello metodologico (Report di Progetto: A4.1 Linee guida dell'indice di Operatività strutturale del Contesto Territoriale IOCT e SIC F4.4):

#### Componente Pericolosità

- Sismica: con modelli ufficiali di base dell'INGV amplificati per mezzo di una nuova carta nazionale del fattore di amplificazione stratigrafica ottenuta a partire dal database della Microzonazione Sismica. Cosismica (Frane e Liquefazione): con modelli di regressione logistica già utilizzati dall'USGS utilizzando il trigger della pericolosità sismica amplificata;
- Vulcanica (fenomeno della ricaduta di ceneri e di flussi piroclastici)
- Idrogeologica (frane e inondazioni)

Dovendo valutare sistemi a rete distribuiti spazialmente, in linea generale la pericolosità è trattata in maniera stocastica tenendo conto della correlazione spaziale delle misure di intensità e la loro cross correlazione (cfr. software Openquake, GEM, 2020; letteratura sulle *Shakemap* http://shakemap.rm.ingv.it/shake/).

#### **Componente Esposizione**

Il modello dell'esposto è un sistema a rete distribuito spazialmente costituito da nodi (edifici strategici, aree di emergenza, ecc.) e da archi (infrastrutture di collegamento).

Un algoritmo originale - **soft\_GOCT** §3.1 - è in grado di trovare i k percorsi ottimali (in termini di efficienza) tra i nodi del sistema per ogni pericolosità ed effettuare successivamente una selezione in termini multi-pericolosità. La perturbazione della connessione è trattata in termini di impedenza di sistema (Boeing, 2018).

#### Componente Vulnerabilità

- Edifici strategici fondamentali: Caratterizzazione dinamica degli edifici e determinazione delle curve di fragilità attraverso la metodologia SMAV (Spina et al., 2018). Tale fase ha previsto la messa in campo di un piano di indagine per la definizione delle caratteristiche modali, quali forme modali e frequenze fondamentali, della struttura nella sua configurazione di esercizio. Per il CT pilota di Lentini, gli ES oggetto di campagna di indagine per l'identificazione dinamica sono stati (report di progetto SIC F4.3):
  - ES1 COM del Comune di Lentini
  - ES2 Presidio Ospedaliero di Lentini
  - o ES3 Caserma dei VVF del Comune di Augusta
- Edifici residenziali: con curve di fragilità ricavate da una metodologia semplificata ("Sismabonus", da DM MIT 58 del 28.02.2017 fino a DM MIT del 06-08-2020).

Le curve di fragilità vengono sempre supportate da modellazioni numeriche avanzate e da confronti con curve di letteratura (Syner-g in Pitilakis et al. 2014; SERA, 2020). In particolare la modellazione numerica degli ES è stata eseguita tramite opportuni software e approcci di modellazione quali elementi finiti, macro-elementi discreti e modelli semplificati. Le caratteristiche modali definite in fase di misura hanno permesso di calibrare i modelli numerici e renderli coerenti con la struttura in una condizione di risposta elastica. L'analisi della struttura ha previsto quindi la calibrazione, come già accennato, del modello matematico tale che le caratteristiche modali simulate numericamente fossero congruenti con quelle rilevate in situ. I modelli si sono avvalsi di diverse ipotesi di base tali da simulare anche il comportamento non lineare della struttura esplicitato in occasione di azioni sismiche. Questi approcci possono essere di tipo equivalente o esplicito. Non sono state previste ulteriori indagini conoscitive sulle caratteristiche meccaniche dei materiali di costruzione. Queste ultime sono state considerate secondo approcci probabilistici (per approfondimenti si rimanda al Report di progetto SIC F4.3).

#### Valutazione di operatività

L'indice IOCT è definito, per un dato periodo di ritorno (TR), come il rapporto tra l'efficienza della rete a seguito di un evento sismico e l'efficienza della rete in condizioni di servizio: questo parametro misura la perdita di operatività attesa nel sistema di gestione strutturale dell'emergenza a seguito del manifestarsi di un evento sismico corrispondente al periodo di ritorno dell'evento stabilito. Tale determinazione finale di operatività strutturale è stata trattata con i teoremi della probabilità condizionata con riferimento a tutti i possibili scenari stocastici per tutti i nodi vulnerabili del sistema (edifici, aree di emergenza, infrastrutture) riferiti a 2 periodi di ritorno pari a 100 e 475 anni. Così facendo ad ogni Contesto Territoriale può essere associato un Indice di Operatività (IOCT) (variabile tra 0 e 1) ed una Classe di Operatività (COCT) (suddivisa in 5 classi: A, B, C, D, E) riproponendo in chiave territoriale il modo di operare del c.d. "Sismabonus" (da DM MIT 58 del 28.02.2017 fino a DM MIT del 06-08-2020). Per tutte queste analisi è stato predisposto un software stand alone in Matlab denominato **SOFT IOCT** (Report di progetto A4.1 LG IOCT). Oltre alla definizione di un indice che misura la performance globale del sistema, ottenuto dall'opportuna combinazione di tutte le probabilità di operatività degli oggetti nelle varie simulazioni, sono state valutate anche le prestazioni delle singole classi di oggetti (ES, COC, AE, AC) per mezzo degli indici di operatività delle singole componenti del sistema in forma disaggregata. Queste valutazioni sono state effettuate imponendo, di volta in volta, l'unica categoria di elementi vulnerabili come quella della quale si vuole calcolare l'indice disaggregato (Figura 4-1). Nelle tabelle di seguito sono esposti i risultati preliminari relativi al CT di Lentini per il tempo di ritorno di 475 anni. Per approfondimenti si rimanda ai report di progetto A4.1 LG IOCT; SIC F4.4.

#### RISULTATI per Tr=475 anni Legenda indici e classi INDICE CLASSE CLASSE INDICE Risultati per le ES fondamentali 0.46 singole Area di ammassamento 0.6 - 0.8 Edifici COC Componenti del sistema di componenti 0.4 - 0.6 gestione dell'emergenza Aree di ricovero (medie delle Connessioni 0.2 - 0.4 1.00 Out operatività) **IOCT** COCT **IOCT** COCT Contesto Territoriale 0.29 С 0.60 - 1.0 Risultato globale 0.35 - 0.6 per il Contesto 0.15 - 0.35 Territoriale 0.05 - 0.15

<sup>\*</sup>stimato con curve di letteratura

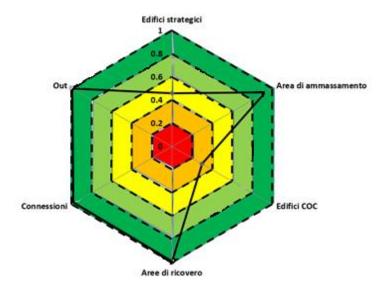
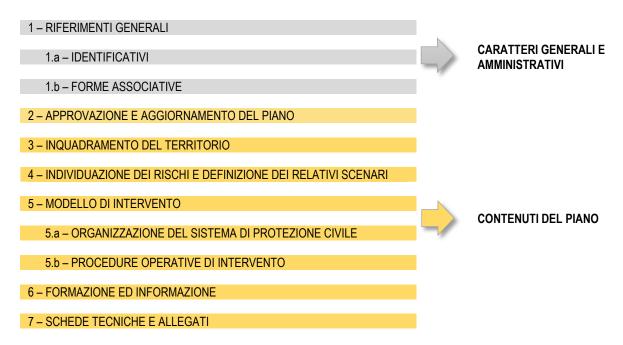



Figura 4-1 Rappresentazione su grafico a radar degli indici delle singole component (TR 475 anni).

(Indice IOCT)

# 5 Valutazione dell'operatività non strutturale nei contesti territoriali sperimentali


Alle componenti strutturali/fisiche minime necessaria alla gestione dell'emergenza di un contesto territoriale, si affiancano quelle non strutturali legate al modello organizzativo ed alle procedure. Il Piano di protezione civile è lo strumento che regola l'operatività dell'intero sistema di gestione delle emergenze e che definisce in anticipo gli scenari di rischio attesi, gli attori coinvolti, le procedure di intervento, le risorse necessarie e disponibili. L'analisi attraverso la rilettura dei piani comunali e la successiva valutazione, dalla scala comunale fino a quella di Contesto Territoriale, permette di avere un quadro conoscitivo sulla distribuzione delle componenti non strutturali tra i Comuni appartenenti allo stesso CT, nonché di giungere ad una valutazione dello stato della pianificazione di protezione civile e della capacità organizzativa a scala di CT.

La metodologia per l'analisi e la valutazione del Piano (Report di progetto A3.2 "Definizione di linee guida per l'analisi della pianificazione dell'emergenza" e A4.3 "Definizione di linee guida per un modello di valutazione standard della pianificazione di emergenza) si basa sulla "content analysis" (analisi dei contenuti), procedura comunemente utilizzata nel campo degli studi sociali, con l'obiettivo di generare dati quantitativi a partire dal contenuto di documenti come articoli di giornale, discorsi ed anche video (Krippendorff, 2004). Tale metodologia successivamente è stata applicata anche alla valutazione degli strumenti di pianificazione: il Piano diventa l'unità di analisi in cui andare a verificare la presenza o l'assenza o la consistenza di determinati elementi specifici (parole, tabelle, mappe, ecc.) (Berke e Godschalk, 2009). Gli elementi del Piano, identificati con l'ausilio di un protocollo standardizzato, vengono raggruppati per insiemi coerenti, corrispondenti in letteratura alle caratteristiche di qualità del piano, e ad esso viene associato un punteggio con delle apposite regole. Successivamente il punteggio viene aggregato per caratteristiche e in alcuni casi per l'intero piano (Ward & Stevens, 2014).

Il metodo proposto si articola in due fasi e sotto-fasi:

- 1. Fase di analisi (Report di progetto A3.2; SIC F3.1)
  - a. Definizione di un protocollo standard, per il rilevamento dei dati;
  - b. Definizione delle istruzioni di compilazione, tali da minimizzare gli errori di interpretazione personale;
  - c. Valutazione dell'affidabilità del protocollo e delle relative istruzioni.
- 2. Fase di valutazione (Report di progetto A4.3; SIC F3.1)
  - a. Definizione delle caratteristiche di qualità di un Piano di Protezione Civile;
  - b. Definizione delle regole di assegnazione dei punteggi
  - c. Definizione delle regole per l'aggregazione dei punteggi
  - d. Sperimentazione

Per ogni Contesto Territoriale, e qui nella fattispecie per il **CT di Catania**, i dati informativi per la prima fase di analisi sono stati raccolti attraverso una scheda di analisi strutturata nelle seguenti sezioni:



Alla fase di analisi è seguita la fase di valutazione attraverso la definizione delle caratteristiche di qualità di un Piano di Protezione Civile, a ciascuna della quale corrispondono più elementi di valutazione. La tabella in basso riporta lo schema riassuntivo di tali caratteristiche.

|                                           | Caratteristiche di qua               | lità del Piano                                                 | Numero elementi |
|-------------------------------------------|--------------------------------------|----------------------------------------------------------------|-----------------|
|                                           |                                      | Fattori di Base per l'inquadramento del territorio             | 9               |
|                                           | Caratteristiche                      | Fattori di Base per la definizione degli scenari di<br>Rischio | 12              |
|                                           | Interne del Piano                    | Modalità di attuazione e organizzazione                        | 24              |
| Qualità del Piano di<br>Protezione Civile |                                      | Procedure operative                                            | 13              |
|                                           |                                      | Coerenza interna                                               | 4               |
|                                           |                                      | Comunicazione                                                  | 23              |
|                                           | Caratteristiche<br>Esterne del Piano | Coordinamento inter-organizzativo                              | 6               |
|                                           |                                      | Conformità                                                     | 7               |

A ciascun elemento è stato assegnato un punteggio (0 - elemento assente; 1 - elemento parzialmente presente nel piano; 2 - elemento completamente presente nel piano) e successivamente calcolato un indice aggregato per caratteristiche di qualità. I valori ottenuti per ogni caratteristica vengono a loro volta aggregati, attraverso una media semplice, per l'intero Piano per il calcolo degli Indicatori di qualità delle Caratteristiche Interne ed Esterne del Piano e complessivamente per il calcolo dell'indicatore di Qualità del Piano di Protezione Civile.

A titolo di esempio vengono riportati di seguito le tabelle e le mappe di sintesi di valutazione dei piani per il **CT di Catania** secondo gli indici aggregati per caratteristiche di qualità (Tabella 5-1) e, a loro volta, per caratteristiche interne ed esterne (Tabella 5-2 - Figura 5-1). Per maggiori dettagli si rimanda ai report di progetto A3.2, A4.3 e SIC F3.1.

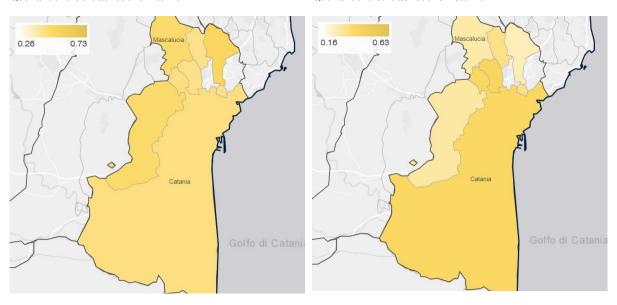

| Caratteristiche di qualità                                  | Catania | Gravina di<br>Catania | Mascalucia | Misterbianco | San<br>Giovanni la<br>Punta | Tremestieri<br>Etneo |
|-------------------------------------------------------------|---------|-----------------------|------------|--------------|-----------------------------|----------------------|
| Fattori di Base per l'inquadramento del territorio          | 0.56    | 0.11                  | 0.22       | 0.39         | 0.39                        | 0.56                 |
| Fattori di Base per la Definizione degli scenari di Rischio | 0.54    | 0.38                  | 0.46       | 0.38         | 0.38                        | 0.13                 |
| Modalità di attuazione e organizzazione                     | 0.35    | 0.27                  | 0.35       | 0.54         | 0.54                        | 0.31                 |
| Procedure operative                                         | 0.38    | 0.65                  | 0.73       | 0.58         | 0.5                         | 0.6                  |
| Coerenza interna                                            | 0.13    | 0.38                  | 0.5        | 0.38         | 0.63                        | 0.13                 |
| Comunicazione                                               | 0.52    | 0.46                  | 0.15       | 0.17         | 0.07                        | 0.28                 |
| Coordinamento inter-organizzativo                           | 0.2     | 0.3                   | 0          | 0            | 0.1                         | 0.3                  |
| Conformità                                                  | 0.71    | 0.8                   | 0.64       | 0.7          | 0.5                         | 0.5                  |

Tabella 5-2 Indicatori di qualità delle Caratteristiche Interne, Esterne e dell'intero Piano.

|                         | Catania | Gravina di<br>Catania | Mascalucia | Misterbianco | San Giovanni la<br>Punta | Tremestieri<br>Etneo |
|-------------------------|---------|-----------------------|------------|--------------|--------------------------|----------------------|
| Caratteristiche interne | 0.39    | 0.36                  | 0.45       | 0.45         | 0.49                     | 0.35                 |
| Caratteristiche esterne | 0.48    | 0.52                  | 0.26       | 0.29         | 0.22                     | 0.36                 |
| Qualità del Piano       | 0.42    | 0.42                  | 0.38       | 0.39         | 0.39                     | 0.35                 |

#### Qualità delle Caratteristiche Interne

#### Qualità delle caratteristiche Esterne



Media: 0.42 - Min: 0.35 - Max: 0.49

Media: 0.36 - Min: 0.22 - Max: 0.52

#### QUALITA' DEL PIANO PER IL CT DI CARIATI: 0,39 (Min: 0.35 - Max: 0.42)

Figura 5-1 Sintesi dei valori di Qualità del Piano e delle Caratteristiche Interne ed Esterne per il CT di Catania

# 6 Analisi per la programmazione di interventi di miglioramento dell'operatività

Le attività nella fase 5 hanno riguardato la definizione di modelli e metodologie convenzionali per valutare il miglioramento dell'Operatività del sistema di gestione dell'emergenza di un Contesto Territoriale e, in particolare, riguarda il miglioramento dell'operatività strutturale degli edifici strategici nonché la stima economica di massa degli interventi. Facendo riferimento alla rappresentazione dell'Indice di Operatività strutturale del Contesto Territoriale (IOCT) (Figura 4-1), possiamo dire che se l'area interna rappresenta l'operatività del sistema (IOCT), l'area complementare può essere ricondotta al costo del miglioramento per ottenere la massima operatività (Figura 6-1). Occorre evidenziare che maggiore è la differenza tra l'area totale dell'esagono e l'area del poligono individuato dai diversi indici parziali, maggiore sarà il costo per l'adeguamento del sistema.

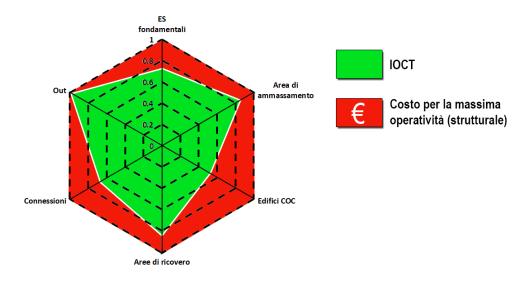



Figura 6-1 Schema esemplificativo del costo per la massima operatività strutturale del sistema

Al fine di fornire una stima di massima di tale costo, sono stati messi a punto modelli, basati su ipotesi semplificative, che mettono in relazione il miglioramento delle prestazioni del singolo oggetto (edificio, infrastruttura, area di emergenza) con il relativo costo. Tali modelli riguardano:

- Edifici Strategici
- Crollo di edifici interferenti (per la valutazione delle interruzioni di servizio delle infrastrutture di connessione e accessibilità);
- Frane sismoindotte (per la valutazione delle interruzioni di servizio delle infrastrutture di connessione e accessibilità);
- Liquefazione cosismica (per la valutazione delle interruzioni di servizio delle infrastrutture di connessione e accessibilità);

Per ogni ipotesi di intervento vengono verificati i benefici in termini di passaggio di classe dell'indice delle singole componenti e di passaggio di classe dell'indice globale COCT. Per maggiori dettagli ed approfondimenti si rimanda ai report di progetto A4.1 Linee guida dell'indice di Operatività strutturale del Contesto Territoriale IOCT; SIC F4.4.

### 7 Altre attività di affiancamento svolte nella Regione Siciliana

Nel corso del progetto, la STS del CNR-IGAG ha supportato il GdL regionale anche per attività riguardanti la pianificazione per il rischio vulcanico e, principalmente, per il piano di Microzonazione Sismica regionale.

Per il supporto alle attività di pianificazione per il rischio vulcanico, sono state definite le "Buone pratiche per la gestione dell'emergenza in caso di caduta di ceneri vulcaniche", (ALLEGATO 1 di questo documento) documento nel quale sono riportate le indicazioni per gli enti e soggetti, sia pubblici che privati, per la gestione del rischio di caduta di cenere, desunte da studi tecnici e di letteratura pregressi (F.E.M.A., 1984; INGV, 2010; INGV, 2012; P.L.I.N.I.U.S., 2014; Wilson, Wilson, Deligne, Blake, & Cole, 2017). In particolare sono stati analizzati i principali aspetti relativi alla vulnerabilità alla caduta di cenere vulcanica degli elementi esposti e sono stati proposti degli interventi di mitigazione del danno in funzione delle diverse tipologie di elementi esposti (infrastrutture di trasporto e di servizio, edifici). L'ultimo capitolo riguarda invece le possibili modalità di smaltimento della cenere di origine vulcanica in riferimento alla normativa vigente, anche nella prospettiva di un suo riutilizzo come non rifiuto.

#### 7.1 Affiancamento al piano regionale di Microzonazione Sismica

A seguito del "Piano Regionale di Microzonazione Sismica" definito dalla Regione Siciliana con delibera n.138 del 20 marzo 2017, sono stati banditi e assegnati a diversi raggruppamenti di professionisti studi di MS che interessano in totale 285 Comuni siciliani suddivisi in 3 progetti (Figura 7-1, Tabella 7-1Errore. L'origine riferimento non è stata trovata.) da realizzarsi con periodi di durata diversa a seconda del tipo di progetto. In particolare i progetti sono così ripartiti:

| Progetto   | Lotti / Comuni       | Livello         | Tempistica <sup>2</sup> |
|------------|----------------------|-----------------|-------------------------|
| Progetto 1 | 7 lotti / 209 Comuni | MS1 + CLE       | 165 giorni              |
| Progetto 2 | 3 lotti / 57 Comuni  | MS3 + CLE       | 255 giorni              |
| Progetto 3 | 19 comuni            | MS1 + CLE + MS3 | 165 + 255 giorni        |

Tabella 7-1 Ripartizione progetti del "Piano Regionale di Microzonazione sismica"

Nel dettaglio le attività di affiancamento svolte dalla *STS* del CNR-IGAG al DRPC Sicilia, svolte nell'ambito del "Piano di Microzonazione Sismica", hanno riguardato i seguenti aspetti:

\_

<sup>&</sup>lt;sup>2</sup> Il numero dei giorni è espresso al netto dei tempi richiesti per la validazione da parte del DRPC Sicilia e della Commissione Tecnica Nazionale.

 Adozione delle "Linee guida per la realizzazione della Carta Geologico-Tecnica per la Microzonazione Sismica con adattamento ai contesti vulcanici".

Nell'ambito dell'attività PON GOVERNANCE E CAPACITA' ISTITUZIONALE 2014-2020 la suddetta linea guida è stata redatta al fine di fornire un aggiornamento delle metodologie operative, derivante dalle esperienze maturate in fase di realizzazione degli studi di MS e dalle indicazioni raccolte da Regioni, Università ed Enti di Ricerca, su tutti gli aspetti della realizzazione della Carta Geologico-tecnica per la Microzonazione Sismica (CGT\_MS) e delle sezioni geologico-tecniche, non trattati in modo esaustivo negli aggiornamenti agli ICMS08 e negli "Standard di rappresentazione e archiviazione informatica degli studi di MS". Nella trattazione dell'argomento si è tenuto conto della prassi, sempre più consolidata negli studi di MS, di realizzare preventivamente una Carta Geologica di base (CG) dalla quale derivare la CGT\_MS. Proprio in Sicilia il DRPC in accordo con gli operatori economici, per gli studi di MS di livello 1 e di livello 3, ha previsto la redazione di una Carta Geologica di base propedeutica alla successiva fase di realizzazione della CGT\_MS. La CGT\_MS rappresenta in effetti il prodotto di sintesi tra le Sezioni geologiche e la Carta Geologica, frutto dell'integrazione tra i dati cartografici pregressi e i rilievi di terreno originali, con i dati di sottosuolo necessari a caratterizzare le diverse unità litologiche dell'area da microzonare. Il documento delle Linee guida della CGT\_MS con adattamento ai contesti vulcanici è stato fornito ai professionisti incaricati di redigere gli studi di MS e successivamente presentato tramite un seminario. Per approfondimenti si rimanda al report di progetto SIC F2.1.

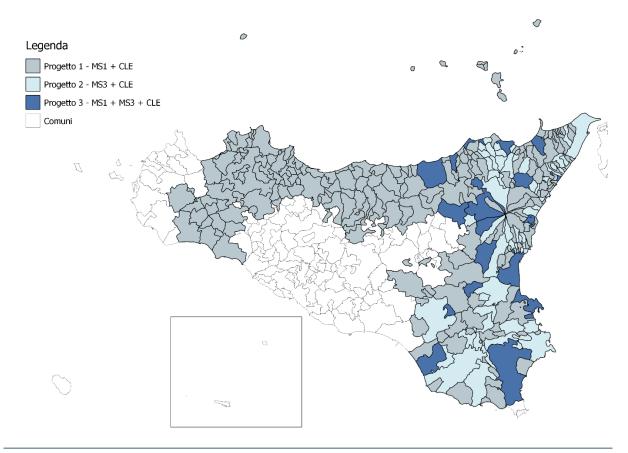



Figura 7-1 Distribuzione dei livelli di studio nei 3 progetti

#### Adozione di un nuovo aggiornamento degli standard di archiviazione e rappresentazione informatica.

Gli Studi di MS di livello 1 effettuati in aree vulcaniche della Sicilia orientale hanno evidenziato alcune problematiche strettamente connesse alle peculiarità dei prodotti vulcanici, caratterizzati da successioni con repentine variazioni laterali e verticali delle litofacies. In tali aree il rapido accumulo di prodotti vulcanici in tempi ristretti su superfici topografiche preesistenti estremamente articolate, modellate sia su prodotti più antichi che su un substrato geologico pre-vulcanico, dà luogo a geometrie del sottosuolo complesse. L'interazione tra vulcanismo e morfogenesi definisce dunque una varietà di geometrie tridimensionali di sottosuolo (es. valli, pendii, scarpate o versanti terrazzati sepolti) che non solo causano improvvise discontinuità dei livelli stratigrafici, ma ne influenzano anche le loro caratteristiche litologiche e meccaniche. Pertanto, ai fini degli studi di MS in aree vulcaniche, per la definizione del modello geologico di sottosuolo, è di fondamentale importanza riconoscere e ricostruire le articolazioni geometriche che potrebbero dar luogo ad amplificazioni del moto sismico al passaggio tra terreni e rocce caratterizzati da diversa proprietà quali rigidezza, densità e resistenza. Al fine di facilitare i professionisti nella microzonazione sismica e nella rappresentazione di geometrie tipiche di aree vulcaniche particolarmente sviluppate in Sicilia orientale nei contesti etnei e iblei, nell'ambito dell'attività PON GOVERNANCE E CAPACITA' ISTITUZIONALE 2014-2020 è stato predisposto un aggiornamento degli standard di archiviazione e rappresentazione informatica che ha previsto oltre all'inserimento di nuovi tematismi lineari e areali quali strumenti di rappresentazione in pianta di geometrie di sottosuolo ricorrenti e particolarmente significative per le ricostruzioni di sezioni geologico-tecniche, anche una nuova proposta di proposta di classificazione delle unità geologico tecniche basata sul modello geologico di sottosuolo, inserendo due nuove unità geologico-tecniche. Tali unità consentono di classificare nei terreni di copertura anche i terreni litoidi di formazioni superficiali, come ad esempio le colate laviche litoidi tipiche di ambienti vulcanici e all'interno delle unità del substrato geologico depositi incoerenti o poco consolidati. I nuovi standard assieme all'aggiornamento del software "SoftMS" di archiviazione delle indagini, adottati con determina n.84 del 22/04/2020, sono stati forniti ai professionisti e successivamente presentati tramite un seminario. Nello specifico, la Tabella 7-2 elenca gli aggiornamenti introdotti.

|                                                                         | ELEMENTI POLIGONALI |          |                            |                                   |  |  |  |  |  |
|-------------------------------------------------------------------------|---------------------|----------|----------------------------|-----------------------------------|--|--|--|--|--|
| UNITA' GT                                                               | Codice              | Unità GT | Simbolo unità GT in geotec | Simbolo unità GT<br>nelle colonne |  |  |  |  |  |
| Litoide di copertura                                                    |                     | LC       | GT - 34 - LC               | GT - 36 LC                        |  |  |  |  |  |
| Substrato geologico incoerente o poco consolidato                       |                     | IS       | GT - 35 - IS               | GT 39 - IS                        |  |  |  |  |  |
| Substrato geologico incoerente o poco consolidato stratificato          |                     | ISS      | GT - 37 - ISS              | GT 40 - ISS                       |  |  |  |  |  |
| Substrato geologico incoerente o poco consolidato fratturato / alterato |                     | SFIS     | GT - 33 - SFIS             | GT 42 - SFIS                      |  |  |  |  |  |

| Substrato geologico incoerente o poco                              |             | SFISS           | GT - 38 - SFISS       | GT 43 - SFISS |
|--------------------------------------------------------------------|-------------|-----------------|-----------------------|---------------|
| consolidato stratificato fratturato / alterato                     |             |                 | 01 00 01100           | 01 10 01 100  |
|                                                                    |             |                 |                       |               |
| FORME DI SUPERFICIE E SEPOLTE                                      | Codice      |                 |                       |               |
| Ventaglio di lava al piede di pendii o scarpate sepolte            | 4040        |                 |                       |               |
| Superficie suborizzontale sepolta                                  | 4050        |                 |                       |               |
| Cono o edificio vulcanoclastico sepolto                            | 4060        |                 |                       |               |
| Depositi incoerenti sepolti                                        | 4070        |                 |                       |               |
| FORME DI SUPERFICIE E SEPOLTE                                      | Codice      |                 |                       |               |
| Campo di fratturazione cosismica                                   | 4080        |                 |                       |               |
|                                                                    | ELEME       | NTI LINEARI     |                       |               |
|                                                                    |             |                 |                       |               |
| FORME DI SUPERFICIE E SEPOLTE                                      | Codice      |                 |                       |               |
| Limite di versante sepolto con inclinazione compresa tra 15° e 45° | 5071        |                 |                       |               |
| Limite di campo lavico (Ambiente vulcanico)                        | 5201        |                 |                       |               |
|                                                                    |             |                 |                       |               |
| AMBIENTI GENETIC                                                   | O DEPOSIZIO | NALI (su "geote | c.shp" - campo "gen") |               |
|                                                                    | Sigla       |                 |                       |               |
| Piroclastiti                                                       | рс          |                 |                       |               |
| Scorie laviche                                                     | sc          |                 |                       |               |
| Depositi epiclastici                                               | ер          |                 |                       |               |

Tabella 7-2 Sintesi degli aggiornamenti apportati agli standard di archiviazione e rappresentazione informatica e descritti nelle LG per la carta geologico-tecnica.

#### • Formazione ai professionisti sugli aggiornamenti agli ICMS e agli standard.

L'attività di formazione svolta **il 20/02/2020** ha previsto la presentazione dei risultati delle attività del PON GOVERNANCE 2014-2020 che hanno riguardato l'aggiornamento degli Indirizzi e Criteri per la Microzonazione Sismica, mediante la definizione delle Linee guida per la CGT\_MS con adattamento all'ambiente vulcanico

(Commissione Tecnica per la MS, 2019) e l'aggiornamento degli standard di rappresentazione e archiviazione informatica (Commissione Tecnica per la MS, 2020) come descritto nei precedenti punti.

In data 4/06/2020 è stato svolto un webinar relativo all'analisi della Condizione Limite dell'emergenza che ha avuto come tematiche principali:

- Le criticità nell'analisi dei piani e nell'applicazione degli standard;
- Le criticità nell'analisi degli aggregati e delle unità strutturali;
- Lo studio preliminare per il Piano di Protezione Civile Comunale

È stato redatto e presentato in occasione del webinar un documento contenente i requisiti minimi per la redazione dello Studio preliminare per il piano di protezione civile comunale in assenza del Piano di protezione civile, al fine di fornire delle linee guida nella selezione degli elementi qualora il comune fosse sprovvisto di piano (ALLEGATO 2 a questo documento).

Nel mese di novembre 2020 si è inoltre svolto un webinar sulla pericolosità sismica locale con particolare riguardo ai contesti vulcanici a cui hanno partecipato i professionisti incaricati della realizzazione degli studi di MS.

 Definizione dei criteri di selezione delle aree di studio per tutti i livelli di approfondimento (MS1 e MS3) e verifica delle aree proposte.

A seguito di una iniziale proposta di aree di studio elaborata in modo automatico ed avente come unico criterio una copertura del 70% della popolazione, è stata effettuata una scrupolosa verifica dal gruppo di lavoro su un campione di circa 60 comuni selezionati tra i vari progetti. Tale verifica ha permesso di riscontrare una serie di criticità ricorrenti (Tabella 7-3) hanno reso necessaria la definizione di una serie di criteri generali da seguire come linea guida, al fine di ottenere aree di studio congruenti non solo con le ordinanze nazionali, ma anche con le caratteristiche proprie di ogni territorio.

| Criticità                                         | Criteri generali                                                                                                                                 |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Delimitazione delle aree di studio coincidente    | Ampliamento dell'area di studio al fine di                                                                                                       |
| con il limite dell'urbanizzato;                   | comprendere un intorno geologicamente                                                                                                            |
|                                                   | significativo che permetta di valutare l'assetto                                                                                                 |
|                                                   | geologico-morfologico del centro abitato;                                                                                                        |
| Esclusione dall'area di studio delle strutture di | Ampliamento dell'area di studio al fine di includere                                                                                             |
| protezione civile che concorrono alla gestione    | le strutture di gestione dell'emergenza per il rischio                                                                                           |
| dell'emergenza per il rischio sismico;            | sismico;                                                                                                                                         |
| Delimitazione delle aree di studio comprendenti   | Ampliamento dell'area di studio al fine di includere i                                                                                           |
| il centro abitato in maniera discontinua;         | centri abitati per intero ed in maniera contigua;                                                                                                |
| Esclusione di nuclei abitati significativi;       | Ampliamento dell'area di studio o inclusione dei nuclei abitati quando significativi, in continuità con il centro abitato o densamente popolati; |

| Criticità                                           | Criteri generali                                                                                                                                                            |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Esclusione di frane e dissesti                      | Ampliamento dell'area di studio al fine di includere le frane ed i dissesti che insistono sui centri e nuclei abitati.                                                      |
| Delimitazione delle aree di studio troppo ristretta | Ampliamento dell'area di studio al fine di comprendere un intorno geologicamente significativo che permetta di valutare l'assetto geologico-morfologico del centro abitato; |

Tabella 7-3 Principali criticità rilevate nella perimetrazione delle aree di studio.

I principali criteri che sono stati adottati sono di seguito sintetizzati:

- Includere il 100% dei centri abitati (Loc. tipo 1, ISTAT) presenti nel territorio comunale, includendo così anche i centri storici;
- Includere i nuclei abitati (Loc. tipo 2, ISTAT) qualora questi siano adiacenti ai centri abitati oppure nel caso in cui siano caratterizzati da un areale non trascurabile;
- Estendere le aree di studio ad un intorno geologicamente significativo al fine di ricostruire l'assetto geologico e geomorfologico dei centri e nuclei abitati;
- Includere le instabilità di versante e le Faglie Attive e Capaci (FAC) che interessano o insistono sui centri e nuclei abitati;
- Verificare che le strutture che contribuiscono alla gestione dell'emergenza siano incluse nelle aree oggetto di studio di MS1 e MS3;
- Motivare un'eventuale esclusione delle aree produttive (Loc. tipo 3, ISTAT) dalle aree oggetto di studio di MS1 e MS3.

A seguito delle osservazioni e dei suddetti criteri, i liberi professionisti hanno modificato e ripresentato le aree che, dopo un'attenta verifica e una fase di concertazione con i comuni, sono state approvate con determina n.75 e 76 del 17/04/2020 a conclusione attività relative alla Fase 1 per gli studi di MS1 e per l'analisi della CLE.

#### Supporto alla pianificazione delle indagini ed alla realizzazione della carta geologica di base

A seguito delle offerte tecniche presentate dai vari operatori economici in fase di partecipazione al bando, sono state proposte delle indagini sia di tipo geofisico che geognostico in alcuni casi, da realizzare anche per gli studi di MS di livello 1. Al fine di conoscere dove verranno localizzate le nuove indagini, con l'obiettivo di migliorare la qualità degli studi di MS, è stato richiesto ai professionisti incaricati di redigere un piano delle indagini. È stato predisposto a tal fine dal soggetto validatore un documento indicante i criteri per aiutare i professionisti nell'ubicare le indagini da realizzare. Sulla base delle proposte presentate, verranno analizzate l'ubicazione delle indagini rispetto alle indagini pregresse raccolte e alla geologia dell'area. Seguiranno delle sessioni di concertazione e di approvazione dei piani.

Contemporaneamente il DRPC, al fine di ottenere un elaborato cartografico uniforme - Carta Geologica e geomorfologia di base- prevista per tutti gli studi di MS del piano regionale, non essendo l'intero territorio regionale coperto da cartografia geologica ufficiale (Carta Geologica d'Italia in scala 1:50000 – progetto CARG) ha proposto

di utilizzare come legenda di riferimento quella relativa alla "Carta Litotecnica Regionale" già realizzata dal DRPC, che si ispira alle legende dei Fogli CARG realizzati in Sicilia.

Al fine di associare colori standardizzati alle diverse unità geologiche è stato utilizzato il manuale cromatico di riferimento per la stampa delle carte geologiche dell'ISPRA.

A partire da fine 2020 ad oggi, le attività di affiancamento hanno riguardato il supporto al DRPC Sicilia ed alla struttura incaricata del coordinamento alla MS (Nhazca) relativamente alla verifica dei primi studi di MS consegnati. Si sono svolte infatti 2 riunioni di affiancamento a seguito delle quali è stato prodotto ed inviato un documento guida per la verifica di conformità agli standard di MS e CLE e di merito rispetto alla MS (ALLEGATO 3 a questo documento).

### 8 Bibliografia

- Berke P.R., Godschalk, D.R. (2009). Searching for the Good Plan: A Meta-analysis of Plan Quality Studies. Journal of Planning Literature 23 (3): 227–40.
- Boeing, G., 2018. Measuring the complexity of urban form and design. Urban Des. Int. <a href="https://doi.org/10.1057/s41289-018-0072-1">https://doi.org/10.1057/s41289-018-0072-1</a>
- Caterino, N., Azmoodeh, B.M., Manfredi, G., 2018. Seismic Risk Mitigation for a Portfolio of Reinforced Concrete Frame Buildings through Optimal Allocation of a Limited Budget. Adv. Civ. Eng.
- Commissione Tecnica per la Microzonazione Sismica, 2020. Standard di rappresentazione e archiviazione informatica v.4.2.

  Dipartimento della Protezione Civile della Presidenza del Consiglio dei Ministri. Roma. Versione realizzata nell'ambito del Programma per il supporto al rafforzamento della Governance in materia di riduzione del rischio ai fini di protezione civile (PON Governance e capacità istituzionale 2014-2020)
- Commissione Tecnica per la Microzonazione Sismica, 2019 Linee guida per la realizzazione della carta geologico-tecnica per la Microzonazione Sismica con adattamento ai contesti vulcanici V.1.0. Versione realizzata nell'ambito del Programma per il supporto al rafforzamento della Governance in materia di riduzione del rischio ai fini di protezione civile (PON Governance e capacità istituzionale 2014-2020)
- Decreto Legislativo 6 febbraio 2020, n. 4. "Disposizioni integrative e correttive del decreto legislativo 2 gennaio 2018, n. 1, recante: «Codice della protezione civile»". Pubblicato nella Gazzetta Ufficiale n.35 del 12.02.2020
- GEM (2020). The OpenQuake-engine User Manual. Global Earthquake Model (GEM) Open- Quake Manual for Engine version 3.8.1. doi: 10.13117/GEM.OPENQUAKE.MAN.ENGINE.3.8.1, 183 pages.
- Krippendorff, K. (2004). Content Analysis: An Introduction to Its Methodology. 2rd ed. Sage Publications
- Pitilakis, K., Crowley, H., Kaynia, a M., Facilities, C., 2014. SYNER-G: Typology Definition and Fragility Functions for Physical Elements at Seismic Risk, 11. <a href="https://doi.org/10.1007/978-94-007-7872-6">https://doi.org/10.1007/978-94-007-7872-6</a>
- Ward, L., Stevens, S. (2014). Plan Quality Evaluation 1994–2012: Growth and Contributions, Limitations, and New Directions. Journal of Planning Education and Research 34 (4): 433–5Co0.



# PON GOVERNANCE 2014-2020 Rischio Sismico e Vulcanico

Attività SIC\_F5.1 | Supporto per il coordinamento fra le strutture tecniche della Regione e gli altri Enti coinvolti;definizione di procedure standard e produzione della documentazione tecnica da adottare

ALLEGATO 1 - Buone pratiche per la gestione

dell'emergenza in caso di caduta di ceneri vulcaniche

Versione 1.1

Pubblicato in data 24/01/2022















# PON GOVERNANCE 2014-2020 Rischio Sismico e Vulcanico

Attività SIC\_F5.1 | Supporto per il coordinamento fra le strutture tecniche della Regione e gli altri Enti coinvolti;definizione di procedure standard e produzione della documentazione tecnica da adottare

### ALLEGATO 1 - Buone pratiche per la gestione

### dell'emergenza in caso di caduta di ceneri

#### vulcaniche

#### Versione 1.1

Pubblicato in data 24/01/2022













#### PON GOVERNANCE E CAPACITÀ ISTITUZIONALE 2014-2020

PROGRAMMA PER IL SUPPORTO AL RAFFORZAMENTO DELLA GOVERNANCE IN MATERIA DI RIDUZIONE DEL RISCHIO SISMICO E VULCANICO AI FINI DI PROTEZIONE CIVILE

#### **DIPARTIMENTO DELLA PROTEZIONE CIVILE**

#### Struttura responsabile dell'attuazione del Programma

Fabrizio Curcio (responsabile), Eliana Mazzaro (supporto)

Immacolata Postiglione (delega funzioni specifiche)

Unità di coordinamento

Fabrizio Bramerini, Angelo Corazza, Luigi D'Angelo, Fausto Guzzetti, Francesca Romana Paneforte, Paola Stefanelli

Unità operativa rischi

Paola Bertuccioli, Sergio Castenetto, Stefano Ciolli, Andrea Duro, Emilio De Francesco, Marco Falzacappa, Domenico Fiorito, Pietro Giordano, Antonella Gorini, Giuseppe Naso, Stefania Renzulli, Daniele Spina

Unità di raccordo DPC

Silvia Alessandrini, Sara Babusci, Pierluigi Cara, Patrizia Castigliego, Valter Germani, Maria Penna

Unità amministrativa e finanziaria

Valentina Carabellese, Francesca De Sandro, Susanna Gregori, Maria Cristina Nardella

Hanno fatto parte della struttura

Angelo Borrelli, Gabriella Carunchio, Luciano Cavarra, Pietro Colicchio, Biagio Costa, Lavinia Di Meo, Gianluca Garro, Antonio Gioia, Francesca Giuliani, Italo Giulivo, Fabio Maurano, Natale Mazzei, Agostino Miozzo, Paolo Molinari, Anna Natili, Roberto Oreficini Rosi, Lucia Palermo, Simona Palmiero, Ada Paolucci, Sara Petrinelli, Biagio Prezioso, Umberto Rosini, Marco Rossitto, Sisto Russo, Chiara Salustri Galli, Maria Siclari, Maurilio Silvestri, Gianfranco Sorchetti, Vincenzo Vigorita

#### **REGIONI**

#### Referenti

Basilicata: Claudio Berardi, Antonella Belgiovine, Maria Carmela Bruno, Cinzia Fabozzi, Donatella Ferrara, Cosimo Grieco, Guido Loperte (coordinatore), Alfredo Maffei, Pietro Perrone; Calabria: Fortunato Varone (coordinatore); Campania: Mauro Biafore (coordinatore), Claudia Campobasso, Luigi Cristiano, Emilio Ferrara, Luigi Gentilella, Maurizio Giannattasio, Francesca Maggiò, Celestino Rampino; Puglia: Tiziana Bisantino (coordinatore), Carlo Caricasole, Domenico Donvito, Franco Intini, Teresa Mungari, Fabrizio Panariello, Francesco Ronco, Zoida Tafilaj; Sicilia: Giuseppe Basile, Antonio Brucculeri, Aldo Guadagnino, Maria Nella Panebianco, Antonio Torrisi

Sono stati referenti

Basilicata: Alberto Caivano; Calabria: Giuseppe Iiritano, Domenico Pallaria, Francesco Russo (coordinatore), Carlo Tansi, Luigi Giuseppe Zinno; Puglia: Giuseppe Tedeschi: Campania: Crescenzo Minotta: Sicilia: Nicola Alleruzzo

#### Affidamento di servizi del DPC al CNR-IGAG

Responsabile Unico del Procedimento: Mario Nicoletti Direttore di Esecuzione Contrattuale: Fabrizio Bramerini

Referenti rischio sismico: Fabrizio Bramerini, Sergio Castenetto, Daniele Spina, Antonella Gorini, Giuseppe Naso

Referente rischio vulcanico: Stefano Ciolli

Referenti pianificazione di emergenza: Domenico Fiorito, Stefania Renzulli

#### CNR-IGAG (operatore economico rischio sismico e vulcanico)

Massimiliano Moscatelli (referente)

Struttura di coordinamento

Gianluca Carbone, Claudio Chiappetta, Francesco Fazzio, Massimo Mari, Silvia Massaro, Federico Mori, Edoardo Peronace, Attilio Porchia, Francesco Stigliano (coordinatore operativo)

Struttura tecnica

Angelo Anelli, Massimo Cesarano, Eleonora Cianci, Stefania Fabozzi, Gaetano Falcone, Cora Fontana, Angelo Gigliotti, Michele Livani, Amerigo Mendicelli, Giuseppe Occhipinti, Federica Polpetta, Alessandro Settimi, Rose Line Spacagna, Daniel Tentori, Valentina Tomassoni

Struttura gestionale

Lucia Paciucci (coordinatrice gestionale), Francesca Argiolas (supporto gestionale), Federica Polpetta (supporto gestionale), Francesco Petracchini Revisori

Emilio Bilotta, Paolo Boncio, Paolo Clemente, Maria Ioannilli, Massimo Mazzanti, Roberto Santacroce, Carlo Viggiani

Supporto tecnico-amministrativo

Francesca Argiolas, Patrizia Capparella, Martina De Angelis, Marco Gozzi, Alessandro Leli, Patrizia Mirelli, Simona Rosselli

Hanno fatto parte della struttura

Raffaela Ciuffreda, Giuseppe Cosentino, Melissa Di Salvo, Giovanni Di Trapani, Rosa Marina Donolo, Carolina Fortunato, Biagio Giaccio, Marco Modica, Marco Nocentini, Andrea Rampa, Laura Ragazzi, Gino Romagnoli, Paolo Tommasi, Vitantonio Vacca

## SIC F 5.1 Supporto per il coordinamento fra le strutture tecniche della Regione e gli altri Enti coinvolti; definizione di procedure standard e produzione della documentazione tecnica da adottare

Responsabile DPC: Daniele Spina, Fabrizio Bramerini

Responsabile CNR-IGAG: Attilio Porchia

#### A cura di

Stefania Fabozzi, Marco Nocentini (CNR-IGAG)

#### Con il contributo di

Eleonora Cianci, Gino Romagnoli, Attilio Porchia (CNR-IGAG)

versione colophon 06/12/2021

# **Sommario**

| Int | ntroduzione                                                              |                                                                                                   | 5  |
|-----|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----|
| 1   | Ricaduta di ceneri: fenomenologia                                        |                                                                                                   |    |
| 2   | Indicazioni per la gestione dell'emergenza da parte di soggetti pubblici |                                                                                                   | 34 |
|     | 2.1                                                                      | Indicazioni generali per enti e soggetti pubblici                                                 | 34 |
|     | 2.2                                                                      | Trasporti                                                                                         | 35 |
|     | 2.2.1                                                                    | Strade ed autostrade                                                                              | 36 |
|     | 2.2.2                                                                    | Linee ferroviarie                                                                                 | 37 |
|     | 2.2.3                                                                    | Aeroporti                                                                                         | 38 |
|     | 2.2.4                                                                    | Porti                                                                                             | 39 |
|     | 2.3                                                                      | Rete elettrica                                                                                    | 39 |
|     | 2.4                                                                      | Acque reflue e riserve idriche                                                                    | 40 |
|     | 2.5                                                                      | Telecomunicazioni                                                                                 | 41 |
|     | 2.6                                                                      | Gasdotti locali                                                                                   | 42 |
|     | 2.7                                                                      | Edifici pubblici                                                                                  | 43 |
| 3   | Indica                                                                   | azioni per la gestione dell'emergenza da parte di soggetti privati                                | 44 |
|     | 3.1                                                                      | Edifici privati                                                                                   | 44 |
| 4   | Norm                                                                     | ne di comportamento in caso di caduta di cenere vulcanica                                         | 45 |
|     | 4.1                                                                      | Indicazioni generali di prevenzione contro la caduta di cenere                                    | 45 |
|     | 4.2                                                                      | Cosa fare durante la caduta di cenere                                                             | 46 |
|     | 4.3                                                                      | Operazioni di pulizia a seguito della caduta di cenere                                            | 46 |
| 5   | Stato                                                                    | dell'arte in Italia e nel mondo sulla gestione e lo smaltimento delle ceneri di origine vulcanica | 47 |
|     | 5.1                                                                      | CER, il catalogo Europeo dei Rifiuti                                                              | 47 |
|     | 5.2                                                                      | Caratteristiche del sito temporaneo di deposito                                                   | 48 |
|     | 5.3                                                                      | Test di cessione                                                                                  | 49 |
| 6   | Cess                                                                     | azione dello stato di rifiuto e possibile riutilizzo della cenere di origine vulcanica            | 51 |

### Introduzione

Tra i possibili fenomeni pericolosi connessi al vulcanismo nella Regione Siciliana, in particolare all'Etna, la ricaduta di ceneri è quello di gran lunga più frequente e che pone i maggiori e quotidiani problemi di gestione. Infatti, anche quando caratterizzata da spessori ridotti, la cenere vulcanica può incidere in maniera significativa sul funzionamento dei diversi sistemi di infrastrutture (i.e. strade e autostrade, linee ferroviarie, aeroporti e porti, linee elettriche) per cui la valutazione preventiva dei possibili danni attesi risulta essere una fase molto delicata ed importante per una corretta gestione dell'emergenza in aree vulcaniche soggette a questo tipo di rischio. Pertanto, l'individuazione, già in tempo di pace, dei possibili elementi a rischio è uno degli obiettivi che il Piano di gestione dell'emergenza deve porsi.

Opportune operazioni di mitigazione del danno, oltre che un apposito piano di pulizia e ripristino dei servizi e delle aree interrotte, secondo un ordine gerarchico di importanza, costituiscono gli strumenti di gestione di questa tipologia di rischio. La crisi vulcanica del 2021 ha nuovamente posto il problema della gestione degli enormi quantitativi di cenere da smaltire e, a seguito delle ennesime ordinanze per lo smaltimento in urgenza, il DL 77/2021 ha introdotto un'importate modifica all'art. 185 del Dlgs 152/2006 promuovendo la transizione verso una economia circolare.

Il presente documento, nel trattare esclusivamente l'effetto di ricaduta di cenere indotto da un'eruzione vulcanica, basandosi su studi tecnici e di letteratura pregressi (F.E.M.A., 1984; INGV, 2010; INGV, 2012; P.L.I.N.I.U.S., 2014; Wilson, Wilson, Deligne, Blake, & Cole, 2017), contiene le indicazioni per la gestione del rischio trattato da parte di enti e soggetti sia pubblici che privati.

## 1 Ricaduta di ceneri: fenomenologia

La caduta di cenere vulcanica consiste nella deposizione di piccole particelle di magma, di dimensioni inferiori a 2 mm di diametro, che, nel corso di un'eruzione esplosiva, vengono immesse dalla colonna eruttiva in atmosfera, raffreddate e solidificate. Le eruzioni verificatesi nel corso dei secoli hanno mostrato come la caduta di cenere sia in grado di produrre impatti fisici, sociali ed economici importanti su diversi settori. Nel presente documento, in particolare, si farà riferimento all'effetto che la ricaduta di cenere vulcanica può avere sulle infrastrutture di trasporto e di servizio e sugli edifici, come di seguito elencato:

- Strade e autostrade;
- Ferrovie;
- Aeroporti;
- Porti:
- Reti elettriche:
- Acque reflue e riserve idriche;
- Telecomunicazioni;
- Gasdotti locali;
- Edifici.

Per ciascun settore vengono di seguito illustrati i principali aspetti relativi alla vulnerabilità degli elementi esposti e alla mitigazione del danno conseguenti alla caduta di cenere vulcanica.

# 2 Indicazioni per la gestione dell'emergenza da parte di soggetti pubblici

#### 2.1 Indicazioni generali per enti e soggetti pubblici

La rimozione e lo smaltimento delle ceneri è probabilmente tra le più grandi sfide per le città e le comunità a seguito di un evento eruttivo. Per poter affrontare efficacemente un'eventuale caduta di cenere è necessaria un'attenta azione di pianificazione e di coordinamento tra gli enti pubblici, le imprese (pubbliche e private) e la cittadinanza, sia nelle zone colpite che al di fuori di esse. Diversi sono i fattori che influenzano i tempi e i metodi impiegati per la rimozione della cenere, la facilità con cui questa può essere rimossa e il costo delle operazioni di pulizia. Tra questi, i principali sono: lo spessore e la granulometria della cenere; l'areale di dispersione della cenere; la disponibilità di mezzi e uomini.

Dall'analisi della bibliografia esistente e dall'esperienza derivante dalla gestione di eventi verificatisi in tutto il mondo (Dipartimento della Protezione Civile, 2019; F.E.M.A., 1984; GNS, 2012; GNS, 2013; P.L.I.N.I.U.S., 2014; USGS, 2016; USGS, 2019; IVHHN (a), 2019), si riportano di seguito alcune indicazioni per la pianificazione e la gestione dell'emergenza da parte degli enti pubblici, così come le azioni che questi dovranno adottare a supporto alla popolazione:

- Sviluppare una lista di priorità degli edifici pubblici, a partire da quelli che fanno parte del sistema di gestione dell'emergenza, che devono essere mantenuti operativi, definendo la sequenza delle misure di prevenzione, pulizia e manutenzione da porre in essere;
- Sviluppare una lista di priorità delle infrastrutture pubbliche, a partire da quelle che fanno parte del sistema di
  gestione dell'emergenza, che devono essere mantenute operative, definendo la sequenza delle misure di
  prevenzione, pulizia e manutenzione da porre in essere;
- Individuare le strutture e infrastrutture, con i relativi servizi, che possono subire arresti durante e/o dopo la caduta di cenere a causa di un loro danneggiamento e/o per l'esecuzione delle operazioni di pulizia/manutenzione;
- Promuovere e incentivare l'esecuzione di verifiche strutturali della capacità di carico da cenere di tetti e balconi di edifici sia pubblici che privati;

- Condurre un'analisi di vulnerabilità di edifici pubblici e infrastrutture presenti sul territorio per determinare gli
  elementi maggiormente esposti a rischio caduta ceneri e programmare i necessari interventi di prevenzione e/o
  adeguamento;
- A seguito dell'evento eruttivo, provvedere all'analisi chimico-fisica della cenere allo scopo di definire le opportune tecniche di smaltimento e/o i possibili riusi del materiale in funzione delle sue caratteristiche chimico-fisiche;
- Individuare dei punti di raccolta temporanei dove far confluire, per un loro successivo smaltimento, le ceneri rimosse dagli edifici pubblici e privati;
- Individuare, in funzione delle caratteristiche chimico-fisiche dei depositi, le aree destinate allo stoccaggio definitivo delle ceneri e/o i processi da mettere in atto per il loro smaltimento/riuso;
- Identificare efficaci ed efficienti metodi di rimozione della cenere, in funzione delle diverse tipologie di strutture e infrastrutture:
- Prevedere la necessità, durante le operazioni di pulizia/manutenzione, di risorse aggiuntive per il mantenimento dei servizi essenziali (es. generatori elettrici, illuminazione ausiliaria, riserve idriche, etc...);
- Istituire un centro di controllo e di comunicazione per diffondere le informazioni e coordinare le attività di pulizia;
- Sviluppare piani e procedure di comunicazione per notificare alla popolazione e ai soccorritori l'avviso di caduta cenere;
- Sviluppare piani e procedure di comunicazione per notificare alla popolazione e ai soccorritori l'ordine, la tempistica e la tipologia delle operazioni di pulizia e manutenzione da porre in atto;
- Sviluppare piani e procedure di comunicazione per notificare alla popolazione e ai soccorritori informazioni riguardanti la mobilità a seguito della caduta di cenere (percorsi consigliati, stato dell'infrastruttura, visibilità, etc...);
- Informare la popolazione sui metodi di smaltimento delle ceneri, sulla presenza e sull'ubicazione delle aree preposte alla raccolta delle ceneri rimosse dagli edifici;
- Informare la popolazione su come proteggere le riserve idriche e i sistemi delle acque piovane e reflue (proteggere chiusini, scollegare pluviali etc...);
- Fornire materiale informativo ai dipendenti di Enti Pubblici che illustri i rischi legati alla caduta di cenere e le operazioni da mettere in atto all'interno dell'edificio;
- Fornire gli adeguati dispositivi di autoprotezione ai soccorritori, agli addetti alle operazioni di pulizia e alla popolazione presente all'interno degli edifici pubblici;
- Non avviare operazioni di pulizia dei tetti fino a quando la pioggia di cenere non sia terminata, ad eccezione dei casi in cui gli edifici siano minacciati da un sovraccarico dei tetti;
- Coordinare gli sforzi di pulizia tra soggetti pubblici e privati per prevenire la continua rimobilizzazione delle ceneri
  e il ripetersi delle operazioni di pulizia, in particolare per quanto riguarda le strade;
- Durante la pulizia delle strade collocare dei sacchi di sabbia intorno o sopra a tombini e caditoie, o chiuderli del tutto, per evitare l'entrata della cenere nel sistema fognario;
- Potrebbe essere utile avere in vigore ordinanze locali che vietano le connessioni dirette di pluviali e canali di scolo con la rete fognaria;
- Prevedere un adeguato numero di mezzi e attrezzature per lo smaltimento e la pulizia della cenere, oltre che di parti di ricambio (olio motori, filtri dell'aria, etc...) e quindi la necessità di una loro abbondanza sul territorio;
- Prevedere la necessità di risorse idriche aggiuntive data la probabile elevata richiesta di acqua, in particolare durante le operazioni di pulizia.

#### 2.2 Trasporti

In generale, con riferimento a tutte le infrastrutture di trasporto, per la gestione dell'emergenza in caso di caduta di ceneri occorre garantire:

l'accesso alle principali arterie di trasporto e linee di trasporto pubblico;

- l'accesso ai servizi ed alle strutture di emergenza, in particolare polizia e vigili del fuoco;
- l'accesso all'assistenza medica / servizi di ambulanza e ospedali;
- l'accesso alle strutture di gestione delle reti (elettricità, acqua e fognature, stazioni di pompaggio);
- la disponibilità di attrezzature per le operazioni di pulizia e ripristino, e di parti di ricambio (filtri dell'aria, olio motore e carburante, guarnizioni, pneumatici);
- la disponibilità di idoneo equipaggiamento per il personale (mascherine, occhiali protettivi, strumenti per la pulizia);
- la disponibilità di adeguata fornitura idrica per la pulizia, oltre a quello per il pericolo da incendio.

Per la pulizia delle aree dai depositi di cenere, in accordo con le normative F.E.M.A. (1984), è utile seguire le seguenti direttive:

- individuare un sito per lo stoccaggio della cenere rimossa per velocizzare le operazioni di pulizia;
- cospargere la cenere con acqua per ridurre la polvere;
- mescolare la cenere con segatura bagnata per contenere le dispersioni aeree;
- posizionare la cenere raccolta su metà o a lato della sede stradale;
- eliminare la rimanente cenere o polvere utilizzando scope elettriche o acqua, prevenendo l'ingresso nel sistema delle acque piovane.

#### 2.2.1 Strade ed autostrade

Nel sistema di trasporto stradale e autostradale, gli elementi maggiormente esposti a danno a seguito della caduta di cenere vulcanica sono:

- 1. Viabilità:
- 2. Segnaletica elettrica;
- 3. Veicoli.

Al superamento dello spessore critico di cenere possono verificarsi:

- interruzioni stradali dovute a scarsa visibilità e riduzione dell'aderenza al suolo;
- danni strutturali o perdita di efficienza dei manufatti stradali:
- abrasione o copertura della segnaletica verticale e orizzontale:
- danni ai dispositivi elettronici della segnaletica stradale soggetti a fenomeno di cortocircuito;
- abrasione dei parabrezza e delle parti meccaniche ed otturazione dei filtri dei veicoli in transito;
- inefficienza del radiatore.

In Tabella 1 (mod. P.L.I.N.I.U.S. 2014) vengono riportati, in funzione di diversi valori soglia di spessore di cenere accumulata, le azioni che l'Ente Gestore dell'infrastruttura dovrà mettere in atto al fine di garantire la sua funzionalità.

Per poter eseguire le azioni di Tabella 1, è necessario che vengano preventivamente definiti dagli organi preposti:

- 1. l'ordine gerarchico dell'infrastruttura stradale e autostradale;
- 2. i limiti di velocità e le distanze di sicurezza in funzione dei diversi valori soglia di spessore di cenere accumulata;
- 3. la stima delle quantità necessarie di mezzi e strumenti per gli interventi di ripristino;
- 4. la disponibilità di attrezzature per gli interventi di ripristino quali: parti di ricambio per i veicoli (filtri dell'aria, olio motore e carburante, guarnizioni, pneumatici); equipaggiamento per il personale (mascherine, occhiali protettivi, strumenti per la pulizia); adeguata fornitura idrica per la pulizia del fondo stradale e dei veicoli.

| SPESSORE DI CENERI<br>PREVISTO (mm) | PROGRAMMAZIONE DEGLI INTERVENTI DA ATTUARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <2                                  | <ul> <li>Controllo della velocità e della distanza di sicurezza per assicurare la sicurezza<br/>stradale in caso di scarsa visibilità</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2-50                                | <ul> <li>Pulizia delle strade in ordine di importanza</li> <li>Controllo della velocità e della distanza di sicurezza per assicurare la sicurezza stradale in caso di scarsa visibilità</li> <li>Limitazione del traffico veicolare per consentire il transito dei veicoli di emergenza</li> </ul>                                                                                                                                                                                                                                                                   |
| 50-150                              | <ul> <li>Pulizia delle strade in ordine di importanza</li> <li>Controllo della velocità e della distanza di sicurezza per assicurare la sicurezza stradale in caso di scarsa visibilità</li> <li>Limitazione del traffico veicolare per consentire il transito dei veicoli di emergenza.</li> <li>Chiusura strade per veicoli a due ruote motrici</li> <li>Riparazione e sostituzione della segnaletica elettrica danneggiata</li> <li>Controllo, pulizia e sostituzione del filtro dell'aria o dell'olio motore dei veicoli</li> <li>Pulizia dei veicoli</li> </ul> |
| >150                                | <ul> <li>Pulizia delle strade in ordine di importanza</li> <li>Chiusura diffusa delle strade (se la cenere è compattatala strada può essere percorsa da veicoli a 4 ruote motrici)</li> <li>Riparazione e sostituzione della segnaletica elettrica danneggiata</li> <li>Controllo, pulizia e sostituzione del filtro dell'aria o dell'olio motore dei veicoli</li> <li>Pulizia dei veicoli</li> </ul>                                                                                                                                                                |

Tabella 1. Tecniche di mitigazione per la ricaduta di ceneri sulle infrastrutture stradali ed autostradali (Mpd. PLINIVS 2014).

#### 2.2.2 Linee ferroviarie

Nel sistema delle infrastrutture ferroviarie, gli elementi maggiormente esposti a danno a seguito della caduta di cenere vulcanica sono:

- 1. strada ferrata (ferrovia, tranvia);
- 2. veicoli ferroviari.

Al superamento dello spessore critico di cenere possono verificarsi:

- interruzione delle strade ferrate, riduzione dell'aderenza delle rotaie e della visibilità;
- danni ai treni ed alla segnaletica elettrica, con rischio di cortocircuito dei dispositivi ed abrasione e corrosione delle parti meccaniche.

In Tabella 2 (mod. P.L.I.N.I.U.S. 2014) vengono riportati, in funzione di diversi valori soglia di spessore di cenere accumulata, le azioni che l'Ente Gestore dell'infrastruttura dovrà mettere in atto al fine di garantire la sua funzionalità.

| SPESSORE DI CENERI<br>PREVISTO (mm) | PROGRAMMAZIONE DEGLI INTERVENTI DA ATTUARE                                                                                                      |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| <1                                  | Nessun intervento                                                                                                                               |
| 1-30                                | Pulizia delle reti ferroviarie e dei treni                                                                                                      |
| 30-150                              | <ul> <li>Pulizia delle reti ferroviarie e dei treni</li> <li>Messa in sicurezza, sostituzione e riparazione degli elementi elettrici</li> </ul> |
| >150                                | Chiusura delle linee ferroviarie                                                                                                                |

Tabella 2. Tecniche di mitigazione per la ricaduta di ceneri sulle infrastrutture ferroviarie (Mpd. PLINIVS 2014).

#### 2.2.3 Aeroporti

Per il settore aeroportuale, la caduta di cenere vulcanica può causare danni considerevoli, non solo agli aeromobili, ma anche alle piste. Gli elementi a rischio individuati sono i seguenti:

- 1. aeromobili;
- 2. piste d'atterraggio;
- 3. vie di rullaggio, raccordi, piazzale di soste;
- 4. veicoli aeroportuali.

Al superamento dello spessore critico di ceneri al suolo, i danni riscontrati sono:

- riduzione dell'attrito della pista e della visibilità;
- corrosione e abrasione delle superfici;
- malfunzionamenti all'elettronica di bordo:
- contaminazione dell'atmosfera interna agli aeromobili;
- potenziale blocco delle parti meccaniche dei motori.

Gli ultimi 4 unti precedenti si possono verificare in particolare se l'aeromobile incontra le ceneri in fase di volo.

In Tabella 3 (mod. P.L.I.N.I.U.S. 2014) vengono riportati, in funzione di diversi valori soglia di spessore di cenere accumulata, le azioni che l'Ente Gestore dell'infrastruttura dovrà mettere in atto al fine di garantire la sua funzionalità.

| SPESSORE DI CENERI<br>PREVISTO (mm) | PROGRAMMAZIONE DEGLI INTERVENTI DA ATTUARE                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <1                                  | <ul><li>Nessun intervento</li><li>Pulizia delle piste</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1-30                                | <ul> <li>Adozione delle principali misure di sicurezza in caso di atterraggio o decollo</li> <li>Pulizia delle piste (se la cenere è asciutta, bagnarla per evitarne la risospensione)</li> <li>Rivestimento degli aeromobili con teloni o spostamento in luoghi sicuri</li> <li>Rivestimento dei dispositivi elettrici e disattivazione di quelli non necessari</li> <li>Interruzione del decollo degli aeromobili</li> <li>Chiusura dell'aeroporto</li> </ul> |
| 30-150                              | <ul> <li>Controllo, manutenzione dei motori o sostituzione delle parti meccaniche</li> <li>Chiusura dell'aeroporto</li> </ul>                                                                                                                                                                                                                                                                                                                                   |
| >150                                | <ul> <li>Controllo, manutenzione dei motori o sostituzione delle parti meccaniche</li> <li>Chiusura dell'aeroporto</li> </ul>                                                                                                                                                                                                                                                                                                                                   |

Tabella 3. Tecniche di mitigazione per la ricaduta di ceneri sugli aeroporti (Mpd. PLINIVS 2014).

#### **2.2.4** Porti

Gli elementi a rischio individuati per le aree portuali sono i seguenti:

- 1. moli;
- 2. banchine;
- 3. imbarcazioni.

#### I danni riscontrati sono:

- riduzione dell'aderenza al suolo e della visibilità
- corto-circuito della segnaletica elettrica;
- potenziale danno di corrosione e abrasione delle superfici.

In Tabella 4 (mod. P.L.I.N.I.U.S. 2014) vengono riportati, in funzione di diversi valori soglia di spessore di cenere accumulata, le azioni che l'Ente Gestore dell'infrastruttura dovrà mettere in atto al fine di garantire la sua funzionalità.

| SPESSORE DI CENERI<br>PREVISTO (mm) | PROGRAMMAZIONE DEGLI INTERVENTI DA ATTUARE                                                                                                                                                                                       |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <1                                  | <ul> <li>Nessun intervento</li> </ul>                                                                                                                                                                                            |
| 1-30                                | <ul> <li>Pulizia delle banchine e dei moli</li> <li>Coprire tutti i dispositivi elettrici e disattivare quelli non necessari</li> </ul>                                                                                          |
| 30-150                              | <ul> <li>Pulizia delle banchine e dei moli</li> <li>Rivestimento dei dispositivi elettrici e disattivazione di quelli non necessari</li> <li>Controllo, manutenzione dei motori o sostituzione delle parti meccaniche</li> </ul> |
| >150                                | <ul> <li>Controllo, manutenzione dei motori o sostituzione delle parti meccaniche</li> <li>Chiusura del porto</li> </ul>                                                                                                         |

Tabella 4. Tecniche di mitigazione per la ricaduta di ceneri sui porti (Mpd. PLINIVS 2014).

#### 2.3 Rete elettrica

La caduta di cenere vulcanica può provocare interruzioni della linea elettrica, aumentando il rischio di incendi dovuti a corto circuito e causando problemi alle operazioni di soccorso.

Gli elementi deboli della rete elettrica risultano essere:

- 1. elettrodotti: sostegni, conduttori, isolatori;
- 2. linea elettrica sotterranea.

I danni che possono verificarsi sono:

- scariche elettriche sui conduttori e isolatori;
- deformazione o rottura dei sostegni della linea;
- interruzione della rete elettrica;
- danni agli elementi mobili ed agli impianti di aerazione degli impianti sotterranei.

In Tabella 5 (mod. P.L.I.N.I.U.S. 2014) vengono riportati, in funzione di diversi valori soglia di spessore di cenere accumulata, le azioni che l'Ente Gestore dell'infrastruttura dovrà mettere in atto al fine di garantire la sua funzionalità.

| SPESSORE DI CENERI<br>PREVISTO (mm) | PROGRAMMAZIONE DEGLI INTERVENTI DA ATTUARE                                                                                                                                                                                                      |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <3                                  | Nessun intervento                                                                                                                                                                                                                               |
| 3-10                                | <ul> <li>Rimozione della cenere</li> <li>Blocco della linea elettrica durante le operazioni di pulizia</li> <li>Utilizzo di aspira polveri ove possibile</li> <li>Prevenzione di corto-circuiti agli isolatori</li> </ul>                       |
| 10-100                              | <ul> <li>Eventuale interruzione della linea elettrica</li> <li>Sostituzione di elementi e filtri degli impianti di aerazione</li> <li>Riparazione o sostituzione di parti danneggiate, dopo aver effettuato un'analisi costibenefici</li> </ul> |
| >100                                | <ul> <li>Sostituzione di elementi e filtri degli impianti di aerazione</li> <li>Riparazione o sostituzione di parti danneggiate, dopo aver effettuato un'analisi costibenefici</li> <li>Interruzione della linea elettrica</li> </ul>           |

Tabella 5. Tecniche di mitigazione per la ricaduta di ceneri sulle reti elettriche (Mpd. PLINIVS 2014).

#### 2.4 Acque reflue e riserve idriche

In seguito alla caduta di cenere vulcanica, il rischio più frequente per il sistema delle acque reflue è quello di sovraccarico. Durante le operazioni di pulizia, soprattutto quando si utilizza acqua, la cenere va ad accumularsi nel sistema fognario. Gli elementi deboli da monitorare in un sistema di acque reflue sono:

- 1. condotte e sistemi di pompaggio delle acque reflue;
- 2. impianto di trattamento.

Il danno più usualmente osservato in seguito alla caduta di cenere è il blocco del deflusso delle acque reflue. Questo può generare danneggiamenti ai componenti meccanici dei sistemi di pompaggio e del trattamento delle acque.

Le riserve idriche prive di copertura sono soggette a pericolo di contaminazione in seguito alla caduta di cenere vulcanica. Ciò comporta un grave pericolo per la popolazione. Ecco perché è necessario prevedere un piano di emergenza che monitori la presenza di eventuali sostanze tossiche all'interno dell'acqua potabile e garantisca una scorta di acqua potabile di emergenza.

Gli elementi a rischio da monitorare sono i seguenti:

- 1. fiumi, ruscelli, riserve idriche prive di coperture;
- 2. acquedotti.

I danni che possono verificarsi sono:

- alterazione della torbidità dell'acqua;
- contaminazione da fluoro e altre sostanze (solfati, cloro, ferro, allumino etc.);
- alterazione dell'acidità e del PH delle riserve idriche;
- blocco, usura ed abrasione delle strutture;
- blocco dei filtri e della procedura di sedimentazione;

- blocco dei motori e degli strumenti elettrici;
- riduzione delle riserve idriche;
- potenziale pericolo igienico.

In Tabella 6 e 7 (mod. P.L.I.N.I.U.S. 2014) vengono riportati, in funzione di diversi valori soglia di spessore di cenere accumulata, le azioni che l'Ente Gestore dell'infrastruttura dovrà mettere in atto al fine di garantire la sua funzionalità.

| SPESSORE DI CENERI<br>PREVISTO (mm) | PROGRAMMAZIONE DEGLI INTERVENTI DA ATTUARE                                                                                                                                                                                                                     |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <3                                  | Nessun intervento                                                                                                                                                                                                                                              |
| 3-10                                | <ul> <li>Pulizia delle reti fognarie, controllando se ci sono perdite o accumuli di cenere che blocchino il flusso delle acque reflue</li> <li>Rivestimento delle strutture esterne con teloni</li> <li>Pulizia del sito per evitare contaminazioni</li> </ul> |
| 10-50                               | <ul> <li>Interruzione del servizio per pulizia dei serbatoi, smaltendo le acque reflue non trattate</li> <li>Riparazione e sostituzione degli elementi danneggiati</li> </ul>                                                                                  |
| >50                                 | <ul> <li>Interruzione del servizio per pulizia dei serbatoi, smaltendo le acque reflue non trattate</li> <li>Riparazione e sostituzione degli elementi danneggiati</li> </ul>                                                                                  |

Tabella 6. Tecniche di mitigazione per la ricaduta di ceneri sui sistemi delle acque reflue (Mpd. PLINIVS 2014).

| SPESSORE CENERI (mm) | INTERVENTI DA ATTUARE                                                                                              |
|----------------------|--------------------------------------------------------------------------------------------------------------------|
| <1                   | Nessun intervento                                                                                                  |
|                      | Operazioni di pulizia con acqua non potabile                                                                       |
| 1-20                 | <ul> <li>Pulizia delle aree adiacenti in modo da evitare contaminazioni</li> </ul>                                 |
|                      | Pulizia dei filtri degli impianti                                                                                  |
|                      | <ul> <li>Sostituzione e/o riparazione delle strutture danneggiate</li> </ul>                                       |
| 20-100               | Eventuali restrizioni per l'uso d'acqua                                                                            |
| 20-100               | <ul> <li>Analisi chimica della cenere allo scopo di individuare eventuale presenze di sostanze tossiche</li> </ul> |
|                      | <ul> <li>Indicazione alla popolazione in merito all'utilizzo dell'acqua</li> </ul>                                 |
|                      | <ul> <li>Sostituzione e/o riparazione delle strutture danneggiate</li> </ul>                                       |
| >100                 | Eventuali restrizioni per l'uso d'acqua                                                                            |
|                      | Analisi chimica della cenere allo scopo di individuare eventuale presenze di sostanze tossiche                     |
|                      | <ul> <li>Indicazione alla popolazione in merito all'utilizzo dell'acqua</li> </ul>                                 |

Tabella 7. Tecniche di mitigazione per la ricaduta di ceneri sui sistemi di gestione e distribuzione delle riserve idriche (Mpd. PLINIVS 2014).

#### 2.5 Telecomunicazioni

Per le reti di telecomunicazione, gli elementi a rischio in caso di caduta da cenere vulcanica sono:

- 1. trasmettitori, ricevitori, antenne (tv, radio);
- 2. reti (telefonica, internet).

I danni attesi sono i seguenti:

- interruzione della linea;
- deformazione o rottura dei pali sulla linea;
- scosse elettriche sugli isolatori;
- blocco dei sistemi di aerazione e ventilazione.

In Tabella 8 (mod. P.L.I.N.I.U.S. 2014) vengono riportati, in funzione di diversi valori soglia di spessore di cenere accumulata, le azioni che l'Ente Gestore dell'infrastruttura dovrà mettere in atto al fine di garantire la sua funzionalità.

| SPESSORE DI CENERI<br>PREVISTO (mm) | PROGRAMMAZIONE DEGLI INTERVENTI DA ATTUARE                                                                                                                                                                                                                                                   |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <5                                  | Nessun intervento                                                                                                                                                                                                                                                                            |
| 5-30                                | <ul> <li>Nessun intervento</li> </ul>                                                                                                                                                                                                                                                        |
| 30-100                              | <ul> <li>Rimozione della cenere con aspiratori o strumenti ad aria compressa</li> <li>Sigillatura delle apparecchiature non a tenuta stagna</li> <li>Interruzione della linea per consentire le operazioni di pulizia</li> <li>Sostituzione, riparazione e ripristino della linea</li> </ul> |
| >100                                | <ul> <li>Rimozione della cenere con aspiratori o strumenti ad aria compressa</li> <li>Sigillatura delle apparecchiature non a tenuta stagna</li> <li>Interruzione della linea per consentire le operazioni di pulizia</li> <li>Sostituzione, riparazione e ripristino della linea</li> </ul> |

Tabella 8. Tecniche di mitigazione per la ricaduta di ceneri sulle reti di telecomunicazione (Mpd. PLINIVS 2014).

#### 2.6 Gasdotti locali

In caso di caduta di cenere vulcanica, la rete dei gasdotti locali deve essere monitorata costantemente per scongiurare eventuali incendi dovuti al contatto tra la cenere incandescente ed elementi danneggiati dall'usura. Gli elementi deboli da monitorare sono costituiti da:

reti di trasporto locali e di distribuzione.

I danni attesi sono:

- corrosione e abrasione delle tubature con potenziale pericolo di rotture e guasti;
- pericolo di incendio dovuto alla temperatura della cenere.

In Tabella 9 (mod. P.L.I.N.I.U.S. 2014) vengono riportati, in funzione di diversi valori soglia di spessore di cenere accumulata, le azioni che l'Ente Gestore dell'infrastruttura dovrà mettere in atto al fine di garantire la sua funzionalità.

| SPESSORE DI CENERI<br>PREVISTO (mm) | PROGRAMMAZIONE DEGLI INTERVENTI DA ATTUARE                                                                                                                                                                                                                                                   |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <1                                  | <ul> <li>Nessun intervento</li> </ul>                                                                                                                                                                                                                                                        |
| 1-10                                | <ul> <li>Nessun intervento</li> </ul>                                                                                                                                                                                                                                                        |
| 10-50                               | <ul> <li>Rimozione della cenere con aspiratori o strumenti ad aria compressa</li> <li>Sigillatura delle apparecchiature non a tenuta stagna</li> <li>Interruzione della linea per consentire le operazioni di pulizia</li> <li>Sostituzione, riparazione e ripristino della linea</li> </ul> |
| >50                                 | <ul> <li>Rimozione della cenere con aspiratori o strumenti ad aria compressa</li> </ul>                                                                                                                                                                                                      |

| SPESSORE DI CENERI<br>PREVISTO (mm) | PROGRAMMAZIONE DEGLI INTERVENTI DA ATTUARE                                           |
|-------------------------------------|--------------------------------------------------------------------------------------|
|                                     | Sigillatura delle apparecchiature non a tenuta stagna                                |
|                                     | <ul> <li>Interruzione della linea per consentire le operazioni di pulizia</li> </ul> |
|                                     | <ul> <li>Sostituzione, riparazione e ripristino della linea</li> </ul>               |

Tabella 9. Tecniche di mitigazione per la ricaduta di ceneri sui gasdotti locali (Mpd. PLINIVS 2014).

#### 2.7 Edifici pubblici

Per quanto riguarda gli edifici, la caduta di cenere vulcanica può provocare da lievi danni agli esterni, a importanti danni strutturali fino al collasso. Il livello di danno dipende dalla quantità e dalle caratteristiche della cenere, dalla tipologia strutturale dell'edificio e degli elementi esposti, dalle condizioni ambientali durante e dopo la caduta di cenere. Una delle maggiori preoccupazioni in caso di caduta di cenere è il potenziale crollo di tetti e di interi edifici a causa del sovraccarico dovuto al peso della cenere accumulatasi. In linea generale, un importante danno strutturale è poco probabile per spessori <100mm, al contrario degli elementi non strutturali come grondaie e sporgenze che possano subire danni. Le grondaie infatti, sono tra gli elementi di un edificio più vulnerabili all'accumulo di cenere in quanto possono raccogliere la cenere presente sul tetto e facilmente sganciarsi o staccarsi, specialmente se la cenere è bagnata e pertanto più pesante. L'intasamento delle grondaie inoltre, può ridurre la capacità di drenaggio e aumentare ulteriormente il carico del tetto. Durante la caduta di cenere, possono verificarsi anche fenomeni di corrosione di tetti metallici e, in generale, delle diverse superfici esposte, a causa della particolare composizione chimico-fisica della cenere stessa.

Questa infine, può facilmente penetrare all'interno degli edifici provocando danni agli impianti di riscaldamento/ventilazione e aria condizionata, agli elettrodomestici, alle superfici/pavimentazioni o ad arredi sensibili, oltre che possibili rischi per la salute degli occupanti.

In sintesi, gli elementi degli edifici esposti a rischio caduta cenere sono i seguenti:

- 1. tetti e balconi;
- 2. grondaie e canali di scolo;
- 3. impianti di riscaldamento, aria condizionata e ventilazione;
- 4. impianti elettrici, generatori e telecomunicazioni;
- 5. elettrodomestici e strumenti elettronici;
- 6. superfici, pavimentazioni e arredi;
- 7. riserve idriche:
- 8. reti fognarie.

I potenziali danni agli edifici che possono verificarsi a causa della caduta di cenere sono:

- collasso parziale o totale del tetto o del balcone;
- perdita di funzionalità o intasamento del sistema di smaltimento pluviali e delle acque reflue;
- collasso delle grondaie e/o del sistema di smaltimento pluviali;
- corrosione e abrasione dei tetti, dei balconi e delle superfici esposte, sia interne che esterne;
- perdita di funzionalità o blocco dei sistemi di riscaldamento, aria condizionata e ventilazione;
- perdita di funzionalità o blocco di elettrodomestici, impianti elettrici, generatori e telecomunicazioni;
- contaminazione delle riserve idriche esterne (es. vasche e cisterne scoperte).

Nella Tabella 8-10 si riportano, in funzione di diversi valori soglia di spessore di cenere accumulata (GNS, 2012; USGS, 2019), gli interventi da mettere in atto al fine di garantire la funzionalità dell'edificio ed evitare l'ingresso delle ceneri all'interno. Non essendo individuati in letteratura valori soglia di riferimento per gli edifici a causa della grande variabilità delle tipologie strutturali e di elementi accessori, i valori riportati in Tabella 10 sono stati definiti integrando le indicazioni riguardanti i possibili danni agli elementi strutturali degli edifici (USGS, 2015) con le soglie di danno degli elementi accessori (es. rete elettrica, rete idrica, etc...) (mod. P.L.I.N.I.U.S. 2014).

| SPESSORE DI CENERI<br>PREVISTO (mm) | PROGRAMMAZIONE DEGLI INTERVENTI DA ATTUARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <3                                  | Nessun intervento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3-20                                | <ul> <li>Chiudere porte, finestre e serrande per evitare l'ingresso della cenere all'interno dell'edificio;</li> <li>Proteggere, o scollegare dalla rete, le grondaie e i sistemi di smaltimento pluviali e reflui;</li> <li>Proteggere con dei teloni i tetti, i rivestimenti e le superfici esposte alla cenere;</li> <li>Coprire o sigillare i comignoli e le prese d'aria esterne per evitare l'ingresso della cenere all'interno dell'edificio. Dove ciò non è possibile, installare dei filtri aggiuntivi;</li> <li>Coprire i sistemi di riscaldamento, aria condizionata e ventilazione;</li> <li>Pulire tetti e balconi;</li> <li>Pulire grondaie e sistemi di smaltimento pluviali, controllando che non ci siano perdite o accumuli di cenere che blocchino il drenaggio;</li> <li>Rivestire le riserve idriche esterne con teloni.</li> </ul> |
| 20-100                              | <ul> <li>Pulire tetti e balconi;</li> <li>Pulire le grondaie e i sistemi di smaltimento pluviali;</li> <li>Arrestare i sistemi di riscaldamento, aria condizionata e ventilazione o ridurne al minimo l'uso se il funzionamento è strettamente necessario, prevedendo l'installazione di filtri aggiuntivi;</li> <li>Interrompere il servizio per la pulizia dei serbatoi, smaltendo le acque reflue non trattate;</li> <li>Riparare e sostituire gli elementi danneggiati.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                   |
| >100                                | <ul> <li>Pulire tetti e balconi;</li> <li>Pulire le grondaie e i sistemi di smaltimento pluviali;</li> <li>Arrestare i sistemi di riscaldamento, aria condizionata e ventilazione o ridurne al minimo l'uso se il funzionamento è strettamente necessario, prevedendo l'installazione di filtri aggiuntivi;</li> <li>Interrompere il servizio per la pulizia dei serbatoi, smaltendo le acque reflue non trattate;</li> <li>Riparare e sostituire gli elementi danneggiati.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                   |

Tabella 8-10. Tecniche di mitigazione per la ricaduta di ceneri sugli edifici pubblici (Mpd. PLINIVS 2014).

## 3 Indicazioni per la gestione dell'emergenza da parte di soggetti privati

#### 3.1 Edifici privati

La gestione dell'emergenza in caso di caduta di ceneri da parte di soggetti privati è limitata alle attività che riguardano gli edifici privati in cui la comunità locale risiede. Le indicazioni relative agli edifici privati sono del tutto analoghe a quelle individuate per gli edifici pubblici e vengono nuovamente riportate in Tabella 11, i cui valori sono stati definiti integrando le indicazioni riguardanti i possibili danni agli elementi strutturali degli edifici (USGS, 2015) con le soglie di danno degli elementi accessori (es. rete elettrica, rete idrica, etc...) (mod. P.L.I.N.I.U.S. 2014).

I soggetti privati, inoltre, saranno stati preventivamente istruiti da soggetti pubblici addetti alla gestione dell'emergenza così come riportato in §1.2.1. In questi casi si raccomanda di seguire le norme di comportamento indicate in §4.1.

| SPESSORE DI CENERI | PROGRAMMAZIONE DEGLI INTERVENTI DA ATTUARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PREVISTO (mm)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <3                 | Nessun intervento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3-20               | <ul> <li>Chiudere porte, finestre e serrande per evitare l'ingresso della cenere all'interno dell'edificio;</li> <li>Proteggere, o scollegare dalla rete, le grondaie e i sistemi di smaltimento pluviali e reflui;</li> <li>Proteggere con dei teloni i tetti, i rivestimenti e le superfici esposte alla cenere;</li> <li>Coprire o sigillare i comignoli e le prese d'aria esterne per evitare l'ingresso della cenere all'interno dell'edificio. Dove ciò non è possibile, installare dei filtri aggiuntivi;</li> <li>Coprire i sistemi di riscaldamento, aria condizionata e ventilazione;</li> <li>Pulire di tetti e balconi;</li> <li>Pulire delle grondaie e dei sistemi di smaltimento pluviali, controllando che non ci siano perdite o accumuli di cenere che blocchino il drenaggio;</li> <li>Rivestire le riserve idriche esterne con teloni.</li> </ul> |
| 20-100             | <ul> <li>Pulire tetti e balconi;</li> <li>Pulire le grondaie e i sistemi di smaltimento pluviali;</li> <li>Arrestare i sistemi di riscaldamento, aria condizionata e ventilazione o ridurne al minimo l'uso se il funzionamento è strettamente necessario, prevedendo l'installazione di filtri aggiuntivi;</li> <li>Interrompere il servizio per la pulizia dei serbatoi, smaltendo le acque reflue non trattate;</li> <li>Riparare e sostituire gli elementi danneggiati.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                |
| >100               | <ul> <li>Pulire tetti e balconi;</li> <li>Pulire le grondaie e i sistemi di smaltimento pluviali;</li> <li>Arrestare i sistemi di riscaldamento, aria condizionata e ventilazione o ridurne al minimo l'uso se il funzionamento è strettamente necessario, prevedendo l'installazione di filtri aggiuntivi;</li> <li>Interrompere il servizio per la pulizia dei serbatoi, smaltendo le acque reflue non trattate;</li> <li>Riparare e sostituire gli elementi danneggiati.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                |

Tabella 11 Tecniche di mitigazione per la ricaduta di ceneri sugli edifici privati (Mpd. PLINIVS 2014).

## 4 Norme di comportamento in caso di caduta di cenere vulcanica

#### 4.1 Indicazioni generali di prevenzione contro la caduta di cenere

Vengono di seguito fornite alcune indicazioni generali di prevenzione per la caduta di ceneri vulcaniche, tuttavia occorre tenere presente che le misure da adottare dipendono strettamente dalla quantità di ceneri e dalla durata e ripetibilità del fenomeno nel tempo e vanno pertanto tarate secondo le reali necessità.

- La cenere deve essere rimossa dai tetti degli edifici per evitare il collasso che potrebbe causare lesioni alla struttura e agli occupanti dell'edificio. Prima di rimuovere la cenere, assicurarsi che i sistemi di smaltimento dell'acqua piovana siano sigillati per impedire l'ingresso della cenere. Se possibile, spazzare la cenere dai tetti allo stato secco, accumulandola in un luogo adatto, per poi riporla in sacchi di plastica;
- In caso di abbondanti cadute di cenere, le finestre e le porte potrebbero richiedere una sigillatura aggiuntiva per evitare che la cenere penetri nell'edificio (es. posizionare degli asciugamani bagnati sotto porte e finestre);
- Prestare particolare attenzione alle persone che entrano negli edifici per assicurarsi che gli indumenti e le calzature siano rimossi al più presto per evitare nuove contaminazioni dell'edificio;

- Se possibile sigillare i sistemi di ventilazione, aria condizionata o riscaldamento, per evitare l'ingresso di cenere negli edifici:
- È necessario eseguire un attento monitoraggio dei sistemi di ventilazione, aria condizionata o riscaldamento. Potrebbe essere necessario sostituire i filtri dell'aria più volte nei mesi successivi;
- Tutti i tipi di motori (auto, camion, aeromobili) richiedono la pulizia/sostituzione dei filtri e controlli periodici per mantenerne l'efficienza. Si dovrebbe chiedere consiglio ai produttori per quanto riguarda i requisiti adeguati del filtro dell'aria:
- È necessario eseguire un attento monitoraggio del lubrificante dei motori. Potrebbe essere necessario sostituire i lubrificanti fino a quattro volte la frequenza normale. Altre componenti di veicoli e macchinari devono essere frequentemente puliti e spolverati per evitare un'eccessiva abrasione e usura;
- Le cisterne sui tetti delle case devono essere scollegate e il serbatoio protetto durante la caduta di cenere;
- La respirazione di piccole quantità di particelle di cenere solitamente può solo causare disagio piuttosto che rappresentare un rischio per la salute. A concentrazioni elevate evitare la cenere e le polveri sottili usando mascherine o, in alternativa, filtri in tessuto sulla bocca e sul naso;
- Le persone che devono lavorare durante la caduta di ceneri devono indossare indumenti protettivi, maschere e occhiali, per garantire che il contatto con il corpo sia ridotto al minimo:
- Le macchine industriali e agricole, come trattori ed escavatori, hanno una maggiore tolleranza alle ceneri, tuttavia saranno necessarie ulteriori misure protettive affinché queste possano continuare a funzionare nel corso della caduta di cenere:
- Le colture e le piante sono danneggiate dalle ceneri vulcaniche, le quali possono contenere componenti volatili altamente tossici come fluoro, idrogeno solforato e anidride solforosa. Si consiglia attendere il parere delle autorità prima di consumare cibo che potrebbe essere stato contaminato dalla caduta di cenere;
- Controllare che l'acqua a disposizione non sia contaminata.

#### 4.2 Cosa fare durante la caduta di cenere

- Rimanere all'interno dell'edificio;
- Chiudere finestre e porte;
- Abbandonare scantinati e seminterrati (compresi garage sotterranei);
- Non uscire su balconi o tetti durante la caduta di ceneri;
- Utilizzare mascherine per proteggere le vie respiratorie;
- Spegnere i dispositivi elettronici;
- Far bollire l'acqua prima di bere;
- Bloccare l'ingresso di scarichi, fogne e sistemi di raccolta pluviali;
- Non scaricare le ceneri nella rete fognaria;
- Non utilizzare sistemi di ventilazione, aria condizionata o riscaldamento:
- Se possibile sigillare i sistemi di ventilazione, aria condizionata o riscaldamento;
- Evitare di utilizzare gli elettrodomestici;
- Utilizzare i mezzi di comunicazione per ricevere indicazioni e informazioni;
- Se all'aperto cercare riparo; utilizzare una maschera o un fazzoletto umido per respirare e indossare indumenti e occhiali protettivi;
- Se possibile non utilizzare l'auto. Parcheggiare l'auto al coperto o coprirla con un telo;
- Se è necessario guidare, procedere lentamente causa scarsa visibilità e aderenza. Non usare il sistema di ventilazione dell'auto:
- Non correre a scuola da tuo figlio. Le scuole sono responsabili per la sicurezza dei bambini e ti informeranno di eventuali procedure di emergenza e sulla loro attivazione;
- Tenere gli animali domestici in casa;
- Scollegare l'alimentazione idrica da eventuali riserve presenti sul tetto durante la caduta di ceneri e le operazioni di pulizia.

#### 4.3 Operazioni di pulizia a seguito della caduta di cenere

 Il migliore metodo di rimozione della cenere è inumidire leggermente la cenere e poi spazzarla via (ATTENZIONE: bagnare abbondantemente la cenere formerà un materiale simile alla colla, non facile da rimuovere, aumentandone il peso);

- Rimuovere immediatamente la cenere (se possibile prima della pioggia), ponendo attenzione al fatto che le particelle di cenere hanno comunemente spigoli vivi che la rendono un materiale molto abrasivo;
- Pulire per primi i tetti, per impedire che le ceneri rinobilitate dal vento coprano le aree già pulite o danneggino e/o
  intasino le grondaie e i canali di scarico;
- Riporre le ceneri raccolte in sacchi di plastica e sigillarli;
- Non scaricare le ceneri nel sistema di smaltimento pluviali o nel sistema fognario;
- Seguire le indicazioni del proprio comune sullo smaltimento delle ceneri;
- Evitare che ulteriori ceneri entrino in casa limitando l'accesso all'entrata più riparata;
- Usare un panno umido o un'aspirapolvere per rimuovere la cenere dalle superfici interne;
- Rimuovere la cenere dall'auto con acqua abbondante. Effettuare la manutenzione dell'automobile se è stata utilizzata durante la caduta di cenere (es. controllare/sostituire il filtro dell'aria, il filtro dell'olio, l'olio e le pastiglie dei freni);
- In linea generale le ceneri asciutte devono essere eliminate con aria ad alta pressione, mentre le ceneri umide devono essere pulite a mano o con acqua ad alta pressione.

# 5 Stato dell'arte in Italia e nel mondo sulla gestione e lo smaltimento delle ceneri di origine vulcanica

La gestione e lo smaltimento delle ceneri vulcaniche non sono regolamentate da una normativa specifica, sia a livello nazionale che internazionale; fino ad oggi la cenere vulcanica è stata considerata come rifiuto speciale, raccolta e conferita in discarica sotto forma di rifiuto. In alcuni casi, enti governativi di vario livello, hanno emesso indicazioni per la raccolta e il successivo smaltimento in sicurezza delle ceneri. In Italia, ad esempio, tra le Regioni che trattano il rischio vulcanico nella pianificazione d'emergenza, la Regione Siciliana, ha finora gestito il fenomeno della ricaduta delle ceneri attraverso l'emanazione, in fase emergenziale, di ordinanze ad hoc.

A seguito degli eventi eruttivi dell'ETNA nel 2021 con considerevoli volumi di ceneri da smaltire, è stata introdotta con Decreto Legge 31 maggio 2021, n. 77 - "Governance del Piano nazionale di rilancio e resilienza e prime misure di rafforzamento delle strutture amministrative e di accelerazione e snellimento delle procedure" - un'importante modifica all'art. 185 del Decreto Legislativo del 3 aprile 2006, n. 152. In particolare l'art. 35 – Misure di semplificazione per la promozione dell'economia circolare – al comma 1b riporta "... al comma 1 lettera c), sono aggiunte, in fine, le seguenti parole: ", le ceneri vulcaniche, laddove riutilizzate in sostituzione di materie prime all'interno di cicli produttivi, mediante processi o metodi che non danneggiano l'ambiente né mettono in pericolo la salute umana". Grazie a questa modifica le ceneri di origine vulcanica non sono più classificate come rifiuto urbano e, di conseguenza, non assoggettate alla relativa disciplina, sempre che non danneggino l'ambiente o mettano in pericolo la salute umana.

In questo capitolo verranno richiamati alcuni principi della normativa nazionale e comunitaria che potrebbero essere applicati alle ceneri di origine vulcanica, per un loro corretto smaltimento o nella prospettiva di un loro riutilizzo.

#### 5.1 CER, il catalogo Europeo dei Rifiuti

Il Catalogo Europeo dei Rifiuti (*CER*), emanato con Decisione 2000/532/CE, aggiornato con decisione 2014/955/UE dalla Comunità Europea e riportato in allegato al D.lgs. 152/2006 (Decreto legislativo 3 aprile, n. 152, 2006) (allegato D), è

costituito da 842 codici identificativi delle diverse tipologie di rifiuto, compresi quelli pericolosi, organizzati in 20 capitoli. Il codice identificativo di ogni rifiuto si compone di 6 cifre di cui le prime 2, corrispondenti al capitolo, indicano l'attività dalla quale si è originato il rifiuto, la terza e quarta cifra indicano, all'interno dell'attività produttiva, il processo da cui si è originato il rifiuto e infine le ultime due cifre indicano la tipologia specifica di rifiuto.

Come anticipato, non esiste un codice specifico riferito alla cenere vulcanica all'interno del *CER* e, di conseguenza, qualunque associazione ha fino ad oggi rappresentato un possibile adattamento/interpretazione della norma al fine di consentirne un corretto smaltimento nel rispetto della normativa esistente.

Ad esempio con ordinanza Ordinanza prot.n. 00019272 del 27 marzo, 2014, il Commissario Straordinario della Provincia Regionale di Catania, ordinò l'attribuzione del codice *CER 17.05.04* (terre e rocce) alla cenere vulcanica con lo scopo di ridurre il carico di inerti che vanno a pesare sulla capacità di abbancamento giornaliero delle discariche, avviando così le procedure per il riutilizzo della cenere presso gli impianti che svolgono attività di recupero R5 (riciclaggio/recupero di altre sostanze inorganiche) del codice *CER*.

Caso analogo è avvenuto in concomitanza della crisi eruttiva del 2021 con l'ordinanza n.1 del 24/02/2021 con cui il sindaco della Città metropolitana di Catania, facendo appello all'art. 191 "*Ordinanze contingibili e poteri sostitutivi*" del DLgs. 152/2006, ha permesso l'attribuzione del codice CER 17.05.04 alle ceneri vulcaniche e consentito l'accesso presso gli impianti di recupero.

Per rendere possibile l'associazione del codice CER 17.05.04 alla cenere, si rende necessario comunque eseguire alcune accortezze, fra le quali:

- la raccolta della cenere di origine vulcanica deve avvenire in modo separato e non miscelata (>95%) con altri rifiuti urbani i quali sono identificati dai codici CER appartenenti al capitolo 20 (20.01; 20.02; 20.03). La miscelazione delle due tipologie di rifiuto compromette la possibilità di associare il codice 17.05.04 alle ceneri e di conseguenza fa decadere la possibilità di essere accettati da un impianto per il recupero;
- > la cenere deve essere accumulata in depositi temporanei (DPR 120/17) identificati nelle vicinanze delle aree di raccolta prima di essere conferita ad un impianto di recupero inerti.

#### 5.2 Caratteristiche del sito temporaneo di deposito

I potenziali siti di deposito temporaneo possono essere identificati, prima di un'eruzione vulcanica, su base regionale come parte del processo di pianificazione di emergenza, secondo i seguenti principali criteri:

- deve trovarsi vicino alle aree di raccolta della cenere;
- possibilità di accesso da strade principali per mezzi pesanti;
- deve essere situato lontano dai corsi d'acqua e da aree di emergenza della falda (per evitare fenomeni di lisciviazione);
- è necessario impedire, attraverso opportune coperture, che la cenere raccolta venga sollevata dal vento e dispersa;
- la cenere accumulata deve essere protetta dalle acque meteoriche.

Il sito, ad ogni modo, deve soddisfare i requisiti da leggi locali, regionali o nazionali sull'uso del suolo e quanto regolamentato dal DPR 120/17 (Decreto del Presidente della Repubblica 13 giugno, n. 120, 2017).

Inoltre, fra le altre possibili precauzioni non esaustive, la cenere rimossa da strade, edifici e altre strutture deve essere accumulata in modo che (USGS, 2015):

- > non crei un nuovo pericolo per il pubblico, i terreni e le strutture;
- > si impedisca al vento o all'acqua di prendere in carico e ridistribuire la cenere.

#### 5.3 Test di cessione

La cenere vulcanica, raccolta e depositata presso i siti di deposito temporaneo individuati, per poter essere conferita presso un impianto di recupero, dovrà essere sottoposta al test di cessione (rif. norma UNI EN 12457-2004) effettuato sui materiali granulari ai sensi dell'articolo 9 del D.M. 5/2/1998 (DM 5 febbraio 1998), (D.M. 05/04/2006 n°186), per valutare la possibile presenza di contaminanti. Il test di cessione consiste in una prova simulata di rilascio di contaminanti, effettuata ponendo in contatto, per un tempo definito, un solido con un lisciviante (i.e. agente separatore) e separando quindi le due fasi per ottenere un eluato (i.e. liquido prodotto dall'esito del test).

Le matrici che non siano risultate conformi ai limiti del test di cessione (Tabella 12) sono fonti di contaminazione e, come tali, devono essere rese conformi, tramite operazioni di trattamento che rimuovano i contaminanti, ai limiti del test di cessione o devono essere sottoposte a messa in sicurezza permanente.

| Parametri       | Unità di misura | Concentrazioni<br>limite |
|-----------------|-----------------|--------------------------|
| Nitrati NO3     | [mg/l]          | 50                       |
| Fluoruri F      | [mg/l]          | 1,5                      |
| Solfati SO4     | [mg/l]          | 250                      |
| Cloruri Cl      | [mg/l]          | 100                      |
| Cianuri Cn      | [µg/l]          | 50                       |
| Bario Ba        | [mg/l]          | 1                        |
| Rame Cu         | [mg/l]          | 0.05                     |
| Zinco Zn        | [mg/l]          | 3                        |
| Berillio Be     | [µg/l]          | 10                       |
| Cobalto Co      | [µg/l]          | 250                      |
| Nichel Ni       | [µg/l]          | 10                       |
| Vanadio V       | [µg/l]          | 250                      |
| Arsenico As     | [µg/l]          | 50                       |
| Cadmio Cd       | [µg/l]          | 5                        |
| Cromo totale Cr | [µg/l]          | 50                       |
| Piombo Pb       | [µg/l]          | 50                       |
| Selenio Se      | [µg/l]          | 10                       |
| Mercurio Hg     | [µg/l]          | 1                        |
| Amianto         | [mg/l]          | 30                       |
| COD             | [mg/l]          | 30                       |
| PH              | Unità di pH     | 5,5 < > 12,0             |

Tabella 12 Test di cessione All. 3 DM 5/2/98. Tabella concentrazioni limite.

Riguardo alle modalità di campionamento e di analisi delle ceneri vulcaniche, esistono dei protocolli internazionali redatti dalla IVHHN (IVHHN (b), 2019) che hanno lo scopo di indirizzare i gruppi di ricerca ed i laboratori di analisi ad una corretta esecuzione e standardizzazione delle procedure principalmente in riferimento ai pericoli indotti da elementi lisciviabili (C.S. Witham, 2004). È infatti presente una vasta letteratura internazionale sugli effetti prodotti sulla salute dell'uomo e dell'ambiente terrestre ed acquatico (Blong, 1984) (Shane J Cronin, 2003) per la presenza nelle ceneri vulcaniche di elementi contaminanti. In particolare, sono riportati casi di intossicazione da fluoro e da metalli pesanti, i quali posso essere estratti ed entrare in circolo attraverso processi di lisciviazione, contaminando acque superficiali, suolo e bestiame.

# 6 Cessazione dello stato di rifiuto e possibile riutilizzo della cenere di origine vulcanica

Secondo l'articolo 184ter del D.Lgs 152/2006 e s.m.i., una sostanza cessa di essere considerata rifiuto quando:

- « 1... è stato sottoposto a un'operazione di recupero, incluso il riciclaggio e la preparazione per il riutilizzo, e soddisfi i criteri specifici, da adottare nel rispetto delle seguenti condizioni:
  - a) la sostanza o l'oggetto sono destinati a essere utilizzati per scopi specifici;
  - b) esiste un mercato o una domanda per tale sostanza od oggetto;
  - c) la sostanza o l'oggetto soddisfa i requisiti tecnici per gli scopi specifici e rispetta la normativa e gli standard esistenti applicabili ai prodotti;
  - d) l'utilizzo della sostanza o dell'oggetto non porterà a impatti complessivi negativi sull'ambiente o sulla salute umana.
- 2. L'operazione di recupero può consistere semplicemente nel controllare i rifiuti per verificare se soddisfano i criteri elaborati conformemente alle predette condizioni. I criteri di cui al comma 1 sono adottati in conformità a quanto stabilito dalla disciplina comunitaria ovvero, in mancanza di criteri comunitari, caso per caso per specifiche tipologie di rifiuto attraverso uno o più decreti del Ministro dell'ambiente e della tutela del territorio e del mare, ai sensi dell'articolo 17, comma 3, della legge 23 agosto 1988, n. 400. I criteri includono, se necessario, valori limite per le sostanze inquinanti e tengono conto di tutti i possibili effetti negativi sull'ambiente della sostanza o dell'oggetto.

...

5. La disciplina in materia di gestione dei rifiuti si applica fino alla cessazione della qualifica di rifiuto.».

A seguito della modifica introdotta con l'art. 35 del DL 77/2021, l'articolo 185 del DIgs 152/2006 riporta:

« 1. Non rientrano nel campo di applicazione della parte quarta del presente decreto:

a)...

b)...

c) il suolo non contaminato e altro materiale allo stato naturale escavato nel corso di attivita' di costruzione, ove sia certo che esso verra' riutilizzato a fini di costruzione allo stato naturale e nello stesso sito in cui e' stato escavato, le ceneri vulcaniche, laddove riutilizzate in sostituzione di materie prime all'interno di cicli produttivi, mediante processi o metodi che non danneggiano l'ambiente ne' mettono in pericolo la salute umana;

...»

Negli ultimi anni si stanno sviluppando una serie di sperimentazioni per il riutilizzo delle ceneri vulcaniche.

La cenere di origine vulcanica se adeguatamente trattata, potrebbe sostituire come inerte alcuni dei più comuni costituenti nella produzione di malte cementizie e prodotti per l'edilizia.

In particolare, si riportano alcuni studi condotti sulla cenere vulcanica originata dall'Etna utilizzata in sostituzione all'"azolo" (Basalto macinato) nella produzione di piastrelle ceramiche (Belfiore, Amato, Pezzino, & Viccaro, 2020). Le piastrelle prodotte, sottoposte a diverse prove di resistenza fisico-meccanica (e.g: *i*) assorbimento d'acqua; *ii*) resistenza alla flessione; *iii*) resistenza agli urti; *iv*) resistenza all'abrasione profonda; *v*) resistenza agli shock termici; *vi*) resistenza al gelo; etc), hanno restituito risultati incoraggianti e del tutto paragonabili ai comuni materiali presenti sul mercato.

Analoghi studi sono stati condotti sul possibile riutilizzo della cenere vulcanica come legante nella produzione di malta e calcestruzzo (Contrafatto, 2017). I test sono stati condotti utilizzando differenti percentuali di aggregati vulcanici, di differente frazione granulometrica, con o senza pre-lavaggio. I risultati preliminari mostrano come la differente combinazione di questi fattori incida sulle caratteristiche di resistenza, duttilità e tempo di presa del composto finale.

Nel 2020 si è concluso un importate progetto condotto dall'Università di Catania denominato REUCET, attraverso il quale sono stati affrontati sistematicamente e con approccio multidisciplinare i possibili utilizzi delle ceneri di origine vulcanica sopra menzionati, promuovendo la transizione verso un'economia circolare. In particolare ha trattato il riutilizzo della cenere per il confezionamento di malte, intonaci e pannelli isolanti, per la realizzazione di prodotti ceramici e come adsorbenti di inquinanti.

## Bibliografia

Belfiore, C., Amato, C., Pezzino, A., & Viccaro, M. (2020). An end of waste alternative for volcanic ash: A resource in the manufacture of ceramic tiles. *Construction and Building Materials*, 263. doi:https://doi.org/10.1016/j.conbuildma

Blong, R. (1984). Volcanic Hazards: A Sourcebook on the Effects of Eruptions. doi:ISBN: 9781483288208.

C.S. Witham, C. O. (2004). Volcanic ash-leachates: a review and recommendations for sampling methods. *Journal of Volcanology and Geothermal Research*. doi:10.1016/j.jvolgeores.2004.11.010

- Contrafatto, L. (2017). Recycled Etna volcanic ash for cement, mortar and concrete manufacturing. *Construction and Building Materials*. doi:10.1016/j.conbuildmat.2017.06.125
- D.M. 05/04/2006 n°186. (2006). Regolamento recante modifiche al decreto ministeriale 05/02/1998.
- Decreto del Presidente della Repubblica 13 giugno, n. 120. (2017). Regolamento recante la disciplina semplificata della gestione delle terre e rocce da scavo, ai sensi dell'articolo 8 del decreto-legge 12 settembre 2014, n. 133, convertito, con modificazioni, dalla legge 11 novembre 2014, n. 16.
- Decreto legislativo 3 aprile, n. 152. (2006). Norme in materia ambientale (G.U. n. 88 del 14 aprile 2006).
- Dipartimento della Protezione Civile . (2019). Cosa fare in caso di caduta di ceneri vulcaniche. Tratto da http://www.protezionecivile.gov.it/attivita-rischi/rischio-vulcanico/sei-preparato/cosa-fare-in-caso-di-caduta-di-ceneri-vulcaniche
- DM 5 febbraio. (1998). Individuazione dei rifiuti non pericolosi sottoposti alle procedure semplificate di recupero ai sensi degli articoli 31 e 33 del decreto legislativo 5 febbraio 1997, n.22. (Supplemento ordinario alla Gazzetta ufficiale 16 aprile 1998 n. 88).
- F.E.M.A. (1984). The mitigation of ashfall damage to public facilities. Lessons learned from the 1980 eruption of Mount St. Helens, Washington. Federal Emergency Management Agency.
- GNS. (2012). Ash Fall. Tratto da https://www.gns.cri.nz/Home/Learning/Science-Topics/Volcanoes/Volcanic-Hazards/Ash-fall
- GNS. (2013). Be Prepared: Volcanic Ash Fall. Tratto da GNS: https://www.gns.cri.nz/Home/Learning/Science-Topics/Volcanoes/Eruption-What-to-do/Be-Prepared-Volcanic-Ash-Fall
- INGV. (2010). Scenari Eruttivi e Livelli di Allerta per il Vesuvio. Dipartimento della Protezione Civile.
- INGV. (2012). Definizione degli scenari di riferimento per il piano di emergenza dei Campi Flegrei per il rischio vulcanico.

  Dipartimento della Protezione Civile.
- IVHHN (a). (2019). Preparedness for ashfall. Tratto da https://www.ivhhn.org/information/preparedness-ashfall
- IVHHN (b). (2019). Protocol for collection, storage, preparation and analysis of volcanic ash samples for assessment of leachable elements. Tratto da https://www.ivhhn.org/guidelines#ash-collection
- Ordinanza N. 1 del 24 febbraio 2021 Città metropolitana di Catania. *Emergenza cenere vulcanica. Individuazione CER e loro gestione.*
- Ordinanza N. 19272 del 27 marzo 2014. Commissario Straordinario della Provincia Regionale di Catania. Ordinanza contingibile e urgente ai sensi dell'art. 191 del D.Lgs 152/2006. Emergenza cenere vulcanica Individuazione CER e loro gestione.
- P.L.I.N.I.U.S. (2014). Relazione sull'analisi di vulnerabilità delle infrastrutture nei riguardi dell'impatto da caduta di cenere sulla base dei dati di letteratura. Deliverable D1.1 (WP1). Convenzione quadro annuale ARES 2014-2015 "Aggiornamento analisi di Rischio E di Scenario al Vesuvio e ai Campi Flegrei"- tra Presidenza del Consiglio dei Ministri Dipartimento di Protezione Civile e il Centro interdipartimentale di ricerca di urbanistica e di pianificazione territoriale "Raffaele D'ambrosio" (L.U.P.T.), struttura operativa centro studi PLINIVS dell'Universitò degli Studi di Napoli "Federico II".

- Shane J Cronin, V. N. (2003, March 1). Environmental hazards of fluoride in volcanic ash: a case study from Ruapehu volcano, New Zealand. *Volume 121, Issues 3–4*, Pages 271-291. doi:https://doi.org/10.10
- USGS. (2015). Roof Loading. Tratto da Volcanic Ash Impacts & Mitigation: https://volcanoes.usgs.gov/volcanic\_ash/roof\_loading.html
- USGS. (2015). Volcanic ash impact and mitigation. Ash disposal. Tratto da https://volcanoes.usgs.gov/volcanic\_ash/ash\_disposal.html
- USGS. (2016). Preparedness during an eruption. Tratto da https://volcanoes.usgs.gov/vhp/during\_eruption.html
- USGS. (2019). *Volcanic Ash Impacts & Mitigation*. Tratto da Volcanic Ash Impacts & Mitigation: https://volcanoes.usgs.gov/volcanic\_ash/
- Wilson, G., Wilson, T. M., Deligne, N. I., Blake, D. M., & Cole, J. W. (2017). Framework for developing volcanic fragility and vulnerability functions for critical infrastructure. *Journal of Applied Volcanology, 6*(14). doi:10.1186/s13617-017-0065-6



# PON GOVERNANCE 2014-2020 Rischio Sismico e Vulcanico

Attività SIC\_F5.1 | Supporto per il coordinamento fra le strutture tecniche della Regione e gli altri Enti coinvolti;definizione di procedure standard e produzione della documentazione tecnica da adottare

ALLEGATO 2 - Requisiti minimi per la

Redazione dello Studio preliminare per il piano di protezione civile comunale in assenza del Piano di protezione civile

Versione 1.0

Pubblicato in data 11/05/2020















# PON GOVERNANCE 2014-2020 Rischio Sismico e Vulcanico

Attività SIC\_F5.1 | Supporto per il coordinamento fra le strutture tecniche della Regione e gli altri Enti coinvolti;definizione di procedure standard e produzione della documentazione tecnica da adottare

ALLEGATO 2 - Requisiti minimi per la

Redazione dello Studio preliminare per il

piano di protezione civile comunale in assenza

del Piano di protezione civile

Pubblicato in data 11/05/2020













#### PON GOVERNANCE E CAPACITA' ISTITUZIONALE 2014-2020

PROGRAMMA PER IL SUPPORTO AL RAFFORZAMENTO DELLA GOVERNANCE IN MATERIA DI RIDUZIONE DEL RISCHIO SISMICO E VULCANICO AI FINI DI PROTEZIONE CIVILE

#### DIPARTIMENTO DELLA PROTEZIONE CIVILE

#### Struttura responsabile dell'attuazione del Programma

Angelo Borrelli (responsabile), Lucia Palermo (supporto)

Unità di coordinamento

Fabrizio Bramerini, Angelo Corazza, Fausto Guzzetti, Agostino Miozzo, Francesca Romana Paneforte, Gianfranco Sorchetti

Unità operativa rischi

Paola Bertuccioli, Sergio Castenetto, Stefano Ciolli, Andrea Duro, Emilio De Francesco, Marco Falzacappa, Pietro Giordano, Antonella Gorini, Giuseppe Naso, Stefania Renzulli, Daniele Spina

Unità di raccordo DPC

Sara Babusci, Pierluigi Cara, Gianluca Garro, Valter Germani, Biagio Prezioso, Sara Petrinelli

Unità amministrativa e finanziaria

Pietro Colicchio, Francesca De Sandro, Maria Cristina Nardella, Ada Paolucci, Vincenzo Vigorita

Hanno fatto parte della struttura

Gabriella Carunchio, Luciano Cavarra, Biagio Costa, Lavinia Di Meo, Antonio Gioia, Francesca Giuliani, Natale Mazzei, Paolo Molinari, Anna Natili, Roberto Oreficini Rosi, Marco Rossitto, Sisto Russo, Chiara Salustri Galli, Maurilio Silvestri

#### REGIONI

#### Referenti

Basilicata: Alberto Caivano (coordinatore), Maria Carmela Bruno, Alfredo Maffei, Cinzia Fabozzi, Pietro Perrone, Claudio Berardi, Cosimo Grieco, Antonella Belgiovine, Guido Loperte, Donatella Ferrara; Calabria: Francesco Russo (coordinatore), Giuseppe liritano, Luigi Giuseppe Zinno; Campania: Mauro Biafore (coordinatore), Claudia Campobasso, Luigi Cristiano, Emilio Ferrara, Luigi Gentilella, Maurizio Giannattasio, Francesca Maggiò, Vincenzo Minotta, Celestino Rampino; Puglia: Tiziana Bisantino, Marco Greco, Franco Intini, Antonio Mario Lerario (coordinatore), Pierluigi Loiacono, Giuseppe Pastore, Francesco Ronco, Isabella Trulli; Sicilia: Nicola Alleruzzo, Giuseppe Basile, Antonio Brucculeri, Aldo Guadagnino, Maria Nella Panebianco, Antonio Torrisi

Sono stati referenti

Calabria: Carlo Tansi, Puglia: Giuseppe Tedeschi

#### Commissione tecnica interistituzionale

Mauro Dolce (presidente); Laura Albani, Salvo Anzà, Walter Baricchi, Lorenzo Benedetto, Michele Brigante, Gennaro Capasso, Vincenzo Chieppa, Luigi D'Angelo, Lucia Di Lauro, Calogero Foti, Luca Lo Bianco, Giuseppe Marchese, Paolo Marsan, Mario Nicoletti, Mario Occhiuto, Ezio Piantedosi, Roberta Santaniello, Luciano Sulli, Carlo Tansi, Federica Tarducci, Carmela Zarra; Segreteria: Elda Catà, Carletto Ciardiello, Giuseppe Tiberti

#### Affidamento di servizi del DPC al CNR-IGAG

Responsabile Unico del Procedimento: Mario Nicoletti Direttore di Esecuzione Contrattuale: Fabrizio Bramerini

Referenti rischio sismico: Fabrizio Bramerini, Sergio Castenetto, Daniele Spina, Antonella Gorini, Giuseppe Naso

Referente rischio vulcanico: Stefano Ciolli

Referenti pianificazione di emergenza: Antonio Gioia, Stefania Renzulli

#### CNR-IGAG (operatore economico rischio sismico e vulcanico)

Massimiliano Moscatelli (referente)

Struttura di coordinamento

Gianluca Carbone, Claudio Chiappetta, Giovanni Di Trapani, Francesco Fazzio, Biagio Giaccio, Federico Mori, Edoardo Peronace, Federica Polpetta, Attilio Porchia, Francesco Stigliano (coordinatore operativo)

Struttura tecnica

Angelo Anelli, Massimo Cesarano, Eleonora Cianci, Melissa Di Salvo, Stefania Fabozzi, Gaetano Falcone, Angelo Gigliotti, Cora Fontana, Carolina Fortunato, Amerigo Mendicelli, Marco Nocentini, Giuseppe Occhipinti, Gino Romagnoli, Paolo Tommasi, Valentina Tomassoni, Vitantonio Vacca

Struttura gestionale

Lucia Paciucci (coordinatrice gestionale), Federica Polpetta (supporto gestionale), Francesco Petracchini

Revisori

Paolo Boncio, Paolo Clemente, Maria Ioannilli, Massimo Mazzanti, Roberto Santacroce, Carlo Viggiani

Supporto tecnico-amministrativo

Francesca Argiolas, Patrizia Capparella, Martina De Angelis, Marco Gozzi, Alessandro Leli, Patrizia Mirelli, Simona Rosselli

## SIC F 5.1 Supporto per il coordinamento fra le strutture tecniche della Regione e gli altri Enti coinvolti; definizione di procedure standard e produzione della documentazione tecnica da adottare

Responsabile DPC: Daniele Spina, Fabrizio Bramerini Responsabile CNR-IGAG: Attilio Porchia

#### A cura di

Eleonora Cianci (CNR – IGAG), Attilio Porchia (CNR – IGAG)

## Requisiti minimi per la redazione dello Studio preliminare per il piano di protezione civile comunale in assenza del Piano di protezione civile

A seguito delle indicazioni della Regione Siciliana per la predisposizione dello "**Studio preliminare per il piano di protezione civile**" (*SPPC*), in assenza del Piano di protezione civile, vengono forniti i requisiti minimi per lo *SPPC*, anche al fine di consentire l'analisi della Condizione Limite per l'Emergenza (*CLE*).

Nello *SPPC* dovranno essere individuati almeno gli elementi indispensabili per svolgere le funzioni strategiche per la gestione dell'emergenza.

#### Tali elementi sono:

- Edifici strategici (ES);
- Aree per l'emergenza (AE);
- Infrastrutture di accessibilità e connessione (AC).

In particolare per gli edifici strategici devono essere individuati, se presenti all'interno del territorio comunale, almeno quelli ospitanti funzioni strategiche fondamentali, come individuati nell'art. 18 dell'OPCM 4007:

- Edificio di coordinamento interventi (ES1);
- Edificio per il soccorso sanitario (ES2);
- Edificio per l'intervento operativo (ES3).

Per le Aree di emergenza AE, devono essere individuati almeno:

- Un'area di ammassamento per ogni Comune con popolazione al di sopra di 5.000 abitanti;
- Un'area di ricovero per ogni Comune.

Per le infrastrutture di accessibilità e connessione devono essere identificate:

- le infrastrutture di connessione tra gli elementi ES e AE definiti nei punti precedenti;
- le infrastrutture di accessibilità al e dal Comune rispetto alla viabilità territoriale superiore, in particolare in funzione della raggiungibilità di ES2 e ES3, se non presenti nel Comune e all'interno del limite provinciale.

Si riporta di seguito una sintesi dei criteri per la selezione degli elementi da individuare, anche in relazione alla normativa vigente.

| Elemento                       | Criteri di selezione                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ES1 – coordinamento interventi | Selezionare un edificio di proprietà pubblica corrispondente al più elevato livello di organizzazione dell'Amministrazione Pubblica presente nel Comune, preferibilmente con funzioni tecniche;  Tale edificio non deve ricadere in aree instabili così come                                                                                                                                                  |
|                                | definite da studi di MS, in aree R3 e R4 PAI (Direttiva 1099/2015 punto 2.1 Idoneità di localizzazione, Caratteristiche strutturali Scheda semplificata rilievo sedi COC - sezioni B e C).                                                                                                                                                                                                                    |
| ES2 – soccorso sanitario       | Selezionare una struttura sanitaria di rango superiore, tra quelle presenti all'interno del territorio comunale, appartenente alla rete emergenza – urgenza, secondo la distinzione nelle tipologie previste dal <i>DM</i> 70/2015 e s.m.i., ed individuata attraverso il Piano sanitario regionale.                                                                                                          |
| ES3 - intervento operativo     | Selezionare un edificio preposto alla funzione di intervento operativo (VV.F.) di rango superiore tra caserme, distaccamenti e simili, presente all'interno del territorio comunale.                                                                                                                                                                                                                          |
| AE ammassamento                | Individuare un'area di proprietà pubblica di dimensioni pari o superiori a 25000 mq e rispondente ai criteri generali secondo la Direttiva 1099/2015, punto 3.3. e Allegato 4 "Caratterizzazione dell'area per l'idoneità del sito".  Manuale CLE, Scheda AE, sezione 2.3.2, istruzioni per il campo 8.                                                                                                       |
| AE ricovero                    | Individuare una o più aree, di proprietà pubblica, in grado di assicurare 15 mq/persona in funzione della popolazione senza tetto stimata secondo gli scenari di danno comunali (Scecom)³, e rispondente ai criteri generali secondo la Direttiva 1099/2015, punto 3.2. e Allegato 4 "Caratterizzazione dell'area per l'idoneità del sito". Manuale CLE, Scheda AE, sezione 2.3.2, istruzioni per il campo 8. |

<sup>&</sup>lt;sup>3</sup> Per la quantificazione della popolazione senza tetto si potrà far riferimento agli scenari di danno comunali (*Scecom*) predisposti dal Dipartimento della Protezione Civile. La stima delle perdite per Comune è stata effettuata in base alle analisi di pericolosità condotte a scala nazionale, facendo riferimento a prefissati valori di probabilità di eccedenza. *Scecom* consente di definire il numero di persone coinvolte e di crolli per eventi al sito caratterizzati da tre livelli di intensità corrispondenti a valori di probabilità di eccedenza pari a p=40%,10% e 2% in 50 anni.

| Elemento         | Criteri di selezione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AC connessione   | Selezionare il percorso con minor tempo di percorrenza di connessione tra gli edifici strategici ( <i>ES</i> ) e le aree di emergenza ( <i>AE</i> ) su viabilità di livello superiore (autostrade, extraurbane principali, extraurbane secondarie, urbane di scorrimento, urbane di quartiere, locali) e nelle migliori condizioni secondo i campi da 14 a 29 del Manuale <i>CLE</i> , Scheda <i>AC</i> , sezione 2.4.2 caratteristiche generali).                                                                                                                             |
| AC accessibilità | Selezionare il percorso con minor tempo di percorrenza di accesso dal confine comunale alla rete di connessione del sistema di gestione dell'emergenza, su viabilità di livello superiore (autostrade, extraurbane principali, extraurbane secondarie, urbane di scorrimento, urbane di quartiere, locali) e nelle migliori condizioni secondo i campi da 14 a 29 del Manuale <i>CLE</i> , Scheda <i>AC</i> , sezione 2.4.2 caratteristiche generali).  La strada deve essere in uso (non in abbandono né in corso di realizzazione / trasformazione) e di proprietà pubblica. |

Ai fini dell'individuazione delle infrastrutture di connessione e accessibilità, in caso di assenza di ES2 e ES3 ricadenti all'interno nel Comune, si dovranno considerare gli ES2 e ES3 raggiungibili in funzione del tempo di percorrenza ed inclusi all'interno della provincia di appartenenza del comune oggetto dello SPPC.

Le informazioni relative gli edifici sanitari (*ES2*), gli edifici per l'intervento operativo (*ES3*) e le infrastrutture principali, necessari per la definizione del sistema di gestione dell'emergenza, possono essere reperite attraverso:

- strumenti di pianificazione a scala territoriale superiore al Comune (provinciali, regionali, nazionali)
   riguardanti:
  - Gli ospedali e le altre strutture sanitarie regionali distinti nelle tipologie previste dal DM 70/2015 e s.m.i. appartenenti alla rete emergenza- urgenza, dotati di funzioni fondamentali per la gestione dell'emergenza (pronto soccorso e PPI);
  - Gli edifici appartenenti ai Vigili del Fuoco con funzioni di intervento operativo in caso di emergenza sismica (caserme, distaccamenti e simili);
  - Le infrastrutture principali presenti all'interno del territorio (autostrade, strade statali/superstrade, strade regionali, strade provinciali)
- strumenti di pianificazione a scala comunale riguardanti gli edifici per il coordinamento degli interventi (ES1), aree per l'emergenza e infrastrutture secondarie.

7

Ulteriori indicazioni e requisiti possono essere desunti dalle "Linee Guida individuazione elementi strutturali minimi del Contesto Territoriale (CLE di CT)" riportate in allegato. Al suo interno, infatti, sono presenti delle schede dettagliate per l'individuazione e la verifica dei requisiti di ognuno degli elementi sopra descritti.

Gli elementi dovranno essere individuati di concerto con l'Amministrazione comunale ed essere parte integrante del futuro Piano di Protezione Civile comunale.



# PON GOVERNANCE 2014-2020 Rischio Sismico e Vulcanico

Attività SIC\_F5.1 | Supporto per il coordinamento fra le strutture tecniche della Regione e gli altri Enti coinvolti;definizione di procedure standard e produzione della documentazione tecnica da adottare

ALLEGATO 3 - Check-list di verifica studi di

Microzonazione Sismica e CLE con istruttorie

Versione 1.0

Pubblicato in data 28/06/2021



di esempio













# PON GOVERNANCE 2014-2020 Rischio Sismico e Vulcanico

Attività SIC\_F5.1 | Supporto per il coordinamento fra le strutture tecniche della Regione e gli altri Enti coinvolti;definizione di procedure standard e produzione della documentazione tecnica da adottare

## ALLEGATO 3 - Check-list di verifica studi di Microzonazione Sismica e CLE con istruttorie di esempio

Pubblicato in data 28/06/2021













#### PON GOVERNANCE E CAPACITA' ISTITUZIONALE 2014-2020

PROGRAMMA PER IL SUPPORTO AL RAFFORZAMENTO DELLA GOVERNANCE IN MATERIA DI RIDUZIONE DEL RISCHIO SISMICO E VULCANICO AI FINI DI PROTEZIONE CIVILE

#### DIPARTIMENTO DELLA PROTEZIONE CIVILE

#### Struttura responsabile dell'attuazione del Programma

Fabrizio Curcio (responsabile), Eliana Mazzaro (supporto)

Unità di coordinamento

Fabrizio Bramerini, Angelo Corazza, Luigi D'Angelo, Fausto Guzzetti, Fabio Maurano, Francesca Romana Paneforte, Gianfranco Sorchetti, Paola Stefanelli Unità operativa rischi

Paola Bertuccioli, Sergio Castenetto, Stefano Ciolli, Andrea Duro, Emilio De Francesco, Marco Falzacappa, Domenico Fiorito, Pietro Giordano, Antonella Gorini, Giuseppe Naso, Stefania Renzulli, Daniele Spina,

Unità di raccordo DPC

Silvia Alessandrini, Sara Babusci, Pierluigi Cara, Patrizia Castigliego, Valter Germani, Maria Penna, Umberto Rosini

Unità amministrativa e finanziaria

Valentina Carabellese, Francesca De Sandro, Susanna Gregori, Maria Cristina Nardella, Simona Palmiero

Hanno fatto parte della struttura

Angelo Borrelli, Gabriella Carunchio, Luciano Cavarra, Pietro Colicchio, Biagio Costa, Lavinia Di Meo, Antonio Gioia, Francesca Giuliani, Natale Mazzei, Agostino Miozzo, Paolo Molinari, Anna Natili, Roberto Oreficini Rosi, Lucia Palermo, Ada Paolucci, Biagio Prezioso, Marco Rossitto, Sisto Russo, Chiara Salustri Galli, Maria Siclari, Maurilio Silvestri,

#### REGIONI

#### Referenti

Basilicata: Alberto Caivano (coordinatore), Maria Carmela Bruno, Alfredo Maffei, Cinzia Fabozzi, Pietro Perrone, Claudio Berardi, Cosimo Grieco, Antonella Belgiovine, Guido Loperte, Donatella Ferrara; Calabria: Fortunato Varone (coordinatore); Campania: Mauro Biafore (coordinatore), Claudia Campobasso, Luigi Cristiano, Emilio Ferrara, Luigi Gentilella, Maurizio Giannattasio, Francesca Maggiò, Vincenzo Minotta, Celestino Rampino; Puglia: Tiziana Bisantino (coordinatore), Carlo Caricasole, Domenico Donvito, Franco Intini, Teresa Mungari, Fabrizio Panariello, Francesco Ronco, Zoida Tafilaj; Sicilia: Nicola Alleruzzo, Giuseppe Basile, Antonio Brucculeri, Aldo Guadagnino, Maria Nella Panebianco, Antonio Torrisi

Sono stati referenti

Calabria: Carlo Tansi, Francesco Russo (coordinatore), Giuseppe Iiritano, Luigi Giuseppe Zinno; Puglia: Giuseppe Tedeschi

#### Commissione tecnica interistituzionale

Mauro Dolce (presidente); Laura Albani, Salvo Anzà, Walter Baricchi, Lorenzo Benedetto, Michele Brigante, Gennaro Capasso, Vincenzo Chieppa, Luigi D'Angelo, Lucia Di Lauro, Calogero Foti, Luca Lo Bianco, Giuseppe Marchese, Paolo Marsan, Mario Nicoletti, Mario Occhiuto, Ezio Piantedosi, Roberta Santaniello, Luciano Sulli, Carlo Tansi, Federica Tarducci, Carmela Zarra; Segreteria: Elda Catà, Carletto Ciardiello, Giuseppe Tiberti

#### Affidamento di servizi del DPC al CNR-IGAG

Responsabile Unico del Procedimento: Mario Nicoletti Direttore di Esecuzione Contrattuale: Fabrizio Bramerini

Referenti rischio sismico: Fabrizio Bramerini, Sergio Castenetto, Daniele Spina, Antonella Gorini, Giuseppe Naso

Referente rischio vulcanico: Stefano Ciolli

Referenti pianificazione di emergenza: Domenico Fiorito, Stefania Renzulli

#### CNR-IGAG (operatore economico rischio sismico e vulcanico)

Massimiliano Moscatelli (referente)

Struttura di coordinamento

Gianluca Carbone, Claudio Chiappetta, Giovanni Di Trapani, Francesco Fazzio, Biagio Giaccio, Federico Mori, Edoardo Peronace, Federica Polpetta, Attilio Porchia, Francesco Stigliano (coordinatore operativo)

Struttura tecnica

Angelo Anelli, Massimo Cesarano, Eleonora Cianci, Melissa Di Salvo, Stefania Fabozzi, Gaetano Falcone, Cora Fontana, Angelo Gigliotti, Amerigo Mendicelli, Marco Nocentini, Giuseppe Occhipinti, Federica Polpetta, Gino Romagnoli, Alessandro Settimi, Rose Line Spacagna, Valentina Tomassoni Struttura gestionale

Lucia Paciucci (coordinatrice gestionale), Federica Polpetta (supporto gestionale), Francesco Petracchini

Revisori

Paolo Boncio, Paolo Clemente, Maria Ioannilli, Massimo Mazzanti, Roberto Santacroce, Carlo Viggiani

Supporto tecnico-amministrativo

Francesca Argiolas, Patrizia Capparella, Martina De Angelis, Marco Gozzi, Alessandro Leli, Patrizia Mirelli, Simona Rosselli

SIC F 5.1 Supporto per il coordinamento fra le strutture tecniche della Regione e gli altri Enti coinvolti; definizione di procedure standard e produzione della documentazione tecnica da adottare.

Responsabile DPC: Fabrizio Bramerini Responsabile CNR-IGAG: Attilio Porchia

#### A cura di

Margherita Giuffrè (CNR - IGAG), Paola Imprescia (CNR - IGAG), Gino Romagnoli (CNR - IGAG)

versione colophon 01/06/2021

## **SOMMARIO**

| 1 | Con   | trollo della struttura di archiviazione dei file                    | J  |
|---|-------|---------------------------------------------------------------------|----|
| 2 | Aggi  | iornamento DB                                                       | 6  |
| 3 | Cart  | a delle MOPS                                                        | 6  |
|   | 3.1   | Colonna litostratigrafica sintetica rappresentativa della microzona | 6  |
| 4 | Cart  | a geologico-tecnica                                                 | 6  |
|   | 4.1   | Sezioni geologico-tecniche                                          | 6  |
| 5 | Eser  | npio di Istruttoria studio di CLE                                   | 8  |
| 6 | Istru | ttoria Comune di Lentini                                            | 11 |
|   | 6.1   | Istruttoria di merito                                               | 11 |
|   | 6.2   | Conformità agli standard di MS                                      | 12 |
|   | 6.3   | Conformità standard della CLE                                       | 12 |
| 7 | Istru | ttoria Comune di Oliveri                                            | 12 |
|   | 7.1   | Istruttoria di merito e conformità agli standard                    | 12 |
|   | 7.2   | Conformità agli standard di MS                                      | 13 |
|   | 7.3   | Conformità agli standard della CLE                                  | 14 |

## 9 Controllo della struttura di archiviazione dei file

| □Nomecomune_S4.1 |
|------------------|
| □ BasiDati       |
| □ CLE            |
| □GeoTec          |
| □Indagini        |
| Documenti        |
| □MS1             |
| □MS23            |
| □ Spettri        |
| □Plot            |
| ₽MS              |
| CLE              |
| □Progetti        |
| □Vestiture       |

| Nome cartella   | Descrizione sintetica dei contenuti                                                                                                                                                                                                                                                                                                                          |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Nomecomune_S4.1 | Cartella principale contenente tutte le cartelle funzionali alla realizzazione degli studi di microzonazione sismica e dell'analisi del Condizione Limite per l'Emergenza. Questa cartella deve essere rinominata con il nome del Comune per il quale si sta eseguen studio.                                                                                 |  |
| BasiDati        | Nella cartella BasiDati andranno inserite le carte di base utilizzate (es. CTR) in formato raster o vettoriale georeferenziate in WGS84UTM33N. Eventuali ulteriori cartografie di riferimento richieste dalle singole Regioni potranno essere inserite qui.                                                                                                  |  |
| CLE             | Cartella contenente:  Gli shapefile per l'analisi della CLE o il geodatabase: CL_AC CL_AE CL_AS CL_ES CL_US Il database CLE_db.mdb che contiene le tabelle relative alle schede: scheda_ES scheda_AE scheda_AC scheda_AS scheda_US                                                                                                                           |  |
| GeoTec          | Cartella contenente gli shapefile o il geodatabase riferiti ad elementi geologici e idrogeologici:  Epuntuali Elineari Forme Geoidr Geotec Cartella nella quale inserire il raster georeferenziato della Carta Geologico Tecnica per la microzonazione sismica prodotta e il file "Legenda".                                                                 |  |
| Indagini        | Cartella contenente:  • gli shapefile delle indagini o il geodatabase:  • Ind_pu  • Ind_ln  • il database "Cdl_tabelle" con le tabelle per l'archiviazione delle indagini. Se si utilizza SoftMS esportare il file con il comando "Esporta Comune".  • la cartella "Documenti" per inserire i documenti pdf delle Indagini_puntuali e delle Indagini_lineari |  |
| MS1             | Contiene i seguenti shapefile o il geodatabase:  Isosub Instab Stab                                                                                                                                                                                                                                                                                          |  |
| MS23            | Identico contenuto della cartella MS1. Contiene anche la cartella "Spettri" nella quale inserire gli spettri in formato .txt                                                                                                                                                                                                                                 |  |
| Plot            | Cartella contenente:  Ia cartella "MS" nella quale inserire i file di stampa delle carte realizzate e la Relazione Illustrativa  Ia cartella "CLE" nella quale inserire la Carta degli Elementi dell'analisi della CLE, con i relativi stralci e la Relazione Illustrativa                                                                                   |  |
| Progetti        | Cartella per eventuali progetti (per esempio .mxd realizzati in EsriArcGis®).                                                                                                                                                                                                                                                                                |  |
| Vestiture       | Cartella per le vestiture realizzate (librerie e simboli). Sono inoltre presenti i loghi della Conferenza delle regioni e delle Province Autonome e del Dipartimento della Protezione Civile, per il layout delle carte                                                                                                                                      |  |

## 10 Aggiornamento DB

- Il database riferito allo studio di MS1 esistente, deve essere aggiornato ai nuovi standard, ad esempio l'unità geologico-tecnica "NR" (standard v2.x) deve essere codificata secondo le unità geologico-tecniche presenti nei nuovi standard.
- deve essere inserita l'indagine SMS in "Cdl\_tabelle". Se si inseriscono più indagini per la stessa MOPS queste devono avere la stessa sequenza di unità gt;
- tutti i parametri relativi alle indagini devono essere inseriti insieme ai relativi documenti (in Cdl\_tabelle tabella "indagine puntuale" campo doc ind" e cartella "Indagini/documenti";
- Le diverse indagini effettuate nello stesso sito devono essere rappresentate da un solo punto (sito\_puntuale) e non da più punti sovrapposti.
- Compilare la Tabella Metadati

#### 11 Carta delle MOPS

- La legenda deve essere prodotta in conformità alle indicazioni di pag. 43 degli Standard (Standard\_v4.1\_Sicilia);
- Si rammenta che la Legenda è relativa al solo campo della carta del foglio da produrre e può contenere in aggiunta solo eventuali tasselli di unità che, pur non presenti nel campo cartografico, sono riscontrabili solo nelle sezioni geologiche (o nelle colonnine litostratigrafiche).
- Le sigle delle Unità visibili nel campo cartografico devono essere all'interno dei tasselli;
- Nello shapefile "instab" in campo "Tipo\_i" deve essere codificato con 8 cifre ad eccezione delle ZA<sub>FAC</sub>, ZA<sub>ID</sub> e ZA<sub>CD</sub>;
- Non vi devono essere sovrapposizioni tra gli shapefile "stab" "instab";
- Sul plot devono esserci le etichette con Tipo\_i e Tipo\_z

#### 11.1 Colonna litostratigrafica sintetica rappresentativa della microzona

- È prevista la loro posizione all'interno della Relazione e della carta delle MOPS
- Per ciò che attiene i simboli di rappresentazione stratigrafica si fa riferimento, ai retini riportati a pag. 65 e 66 degli Standard (Standard\_v4.1\_Sicilia).
- Si rammenta che i gli spessori minimi di riferimento per la MS sono di 3m: pertanto adeguare i range intervallari di variabilità degli spessori delle Unità (es. 3-XXmetri)
- Le sigle delle Unità visibili nel campo cartografico devono essere riportate all'interno della colonna

### 12 Carta geologico-tecnica

- Secondo i nuovi standard, le instabilità di versante devono essere riportate in trasparenza al di sopra delle unità geologico-tecniche. Di conseguenza la cartografia pregressa deve essere aggiornata.
- Aggiornare le unità geologico-tecniche secondo le sigle presenti nei nuovi standard (es. l'unità "NR" deve essere ri-codificata);
- Non vi devono essere sovrapposizioni tra i poligoni delle diverse unità geologico-tecniche.
- Sul plot devono esserci le etichette con Tipo\_gt

#### 12.1 Sezioni geologico-tecniche

Le sezioni geologico tecniche sono utilizzate per trasferire in profondità le informazioni presenti nel campo cartografico, vincolate sulla base della correlazione con le stratigrafie di pozzi, sondaggi e risultati di indagini geofisiche. Secondo gli standard di rappresentazione ed archiviazione informatica, nonché le LG sulla carta geologico-tecnica adottate, sono di seguito elencate alcune indicazioni:

- Devono essere presenti almeno 2 sezioni geologico-tecniche per Comune.
- La scala delle sezioni geologico-tecniche deve essere maggiore o uguale di 1:5000 al fine di poter rappresentare lo spessore minimo di 3m delle unità geologico-tecniche.
- Il campo della carta CGT MS dovrà contenere le tracce delle sezioni rappresentative del modello di sottosuolo.
- Le sezioni dovranno essere riconducibili in modo univoco alle tracce presenti nel campo cartografico attraverso l'inserimento di elementi di congiunzione quali riferimenti alfabetici (A-A', C-C, D-E, etc.) o numerici (1-1, 1-2 oppure I-I, IV-V, etc.) sia ai limiti delle tracce presenti nel campo cartografico sia ai lati del disegno della singola sezione. Le lettere o i numeri posti a fianco delle sezioni dovranno essere consequenziali nella disposizione sulla carta.
- Orientare il punto di vista, apponendo agli estremi della sezione disegnata l'indicazione della posizione di vista rispetto all'orientamento geografico. Sono ammesse indicazioni tipo SSE (sud-sud est) qualora permettano la migliore individuazione della posizione.
- Il rapporto tra la scala verticale e quella orizzontale della sezione disegnata è fissato in 1/1 (lunghezze uguali ad altezze).
- Le sezioni che sono state tarate con uno o più sondaggi geognostici e/o con indagini geofisiche, proiettati o ricadenti sulla traccia della sezione, dovranno riportare la posizione relativa dei/le sondaggi/indagini di taratura, la loro profondità in sottosuolo e il codice di riferimento sondaggi/indagini utilizzate. Le indagini proiettate, ovvero non coincidenti con la traccia planimetrica di sezione, vanno riportate in parentesi tonda. Si rammenta che qualora la traccia di sezione intercetti uno o più punti indagine con indicazione della profondità in metri della falda, la stessa deve essere riportata in sezione. Dovranno essere riportati anche gli eventuali incroci con altre sezioni e adeguatamente verificata la loro congruenza in termini di spessori e geometria.
- Le sezioni vanno corredate con alcuni dei riferimenti toponomastici presenti nel campo della carta.
- Le sigle delle Unità visibili nel campo cartografico devono essere riportate in sezione.
- La traccia della sezione sul campo carta deve corrispondere al tratto di sottosuolo ricostruito.
- In attesa che sia consolidato un comune standard di rappresentazione, i colori della sezione geologico-tecnica devono necessariamente coincidere con quelli del campo cartografico descritti negli standard (sulla base delle unità gt).
- La profondità delle sezioni geologico-tecniche deve possibilmente spingersi fino al raggiungimento del bedrock sismico.
- Lungo il profilo delle sezioni geologico-tecniche andrebbero proiettati i limiti delle MOPS identificate.

#### Devono essere inoltre verificate:

- Il livello 1 di MS deve essere aggiornato rispettando l'estensione originaria. Tutti gli elaborati (carta delle MOPS, carta geologico-tecnica, carta delle indagini) non possono avere un'estensione inferiore rispetto a quella del precedente studio di MS1 di cui si sta facendo l'aggiornamento;
- Congruenza tra quanto archiviato (shapefile) e quanto rappresentato nei plot pdf (Cartella "Plot");
- Tutti gli shapefile devono essere aggiornati alla versione degli standard di riferimento (Standard\_v4.1\_Sicilia), in particolare verificare la compilazione dei nuovi campi (aggiornare la struttura);

## 13 Esempio di Istruttoria studio di CLE

## Preistruttoria: Comune – Regione

| Diffo | rmità risco | ntrate rispetto agli standard secondo lista di controllo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Integrazioni richieste                                   |
|-------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 1.    | ID 35a      | <ul> <li>Non è presente il file in pdf della Carta degli elementi</li> <li>La scala di rappresentazione della Carta è superiore a 1:15.000</li> <li>Produrre la Carta degli elementi corretta (vedi seguenti difformità e richieste di integrazioni)</li> <li>La rappresentazione e la legenda non è conforme a quanto contenuto negli Standard di rappresentazione e archiviazione: non sono stati inseriti gli identificativi dei principali elementi della CLE (ES, AE, AC)</li> </ul>                                                                                                                                                                                                                                                         | Produrre la Carta degli elementi corretta                |
| 2.    | ID 35b      | <ul> <li>Non è presente la relazione illustrativa</li> <li>Non sono presenti gli stralci in pdf della Carta degli elementi</li> <li>La scala di rappresentazione degli stralci è superiore al 2.000</li> <li>Produrre gli stralci in pdf della Carta degli elementi corretti (vedi seguenti difformità e richieste di integrazioni)</li> <li>La rappresentazione e la legenda non è conforme a quanto contenuto negli Standard di rappresentazione e archiviazione: non sono stati inseriti tutti gli identificativi dei principali elementi della CLE (ES, AE, AC, AS, US)</li> </ul>                                                                                                                                                            | Produrre gli stralci della Carta degli elementi corretti |
| 3.    | ID 36a      | Struttura dello shapefile:  - manca il campo cod_prov/cod_com/ID_infra/ID_AC  - il campo XXX non è ben compilato  - gli identificativi ID_AC non sono univoci  ✓ Rappresentazione delle AC:  - I nodi tra le ACXX non sono corettamente sovrapposti  - non corrisponde la rappresentazione dell'AC XX con il dato della tipologia (tipo_infra) inserito nel database  - le AC non sono correttamente rappresentate: le AC devono essere rappresentate con un nodo iniziale e un nodo finale; inoltre il punto finale di una AC deve coincidere con il punto di inizio di un'altra  - le AC di accessibilità devono arrivare fino al confine comunale  - la AC XX non è una AC di connessione  - la AC XX non è una AC di accessibilità            | Modificare lo shapefile come indicato                    |
|       |             | <ul> <li>la AC che collega ad un'area di attesa e non al resto del sistema di CLE va eliminata</li> <li>le AC fuori comune: : le AC fuori comune devono essere suddivise in tratti, i cui nodi corrispondono all'intersezione con il confine comunale.</li> <li>✓ Individuazione delle AC:         <ul> <li>le AC XX non sono individuate correttamente (una AC è un'entità che va da un nodo ad un altro nodo: se viene interrotta da un'altra AC, deve essere suddivisa in due)</li> <li>le ACXX devono essere unite poiché il nodo che le divide non ha motivo di esistere (non rappresenta né un accesso, né un'intersezione con un'altra AC, n' un'intersezione con il confine comunale)</li> </ul> </li> <li>Accesso ad ES e AE:</li> </ul> |                                                          |

- la AC XX non collega elementi della CLE
- I'AC XX non individua I'accesso all'ES XX
- I'AC XX non individua l'accesso all'AE XX
- 4. ID 36b Shapefile CL\_AE

#### ✓ Struttura dello shapefile:

- manca il campo cod\_prov/cod\_com/ID\_area/ID\_AE
- il campo XXXX non è ben compilato
- gli identificativi ID AE non sono univoci
- se ci sono delle aree di attesa, queste devono avere gli ID AE

#### ✓ Rappresentazione delle AE:

- non corrisponde la rappresentazione dell'AE XX con il dato della tipologia (tipo area) inserito nel database
- Le AE sono aree aperte e devono essere rilevate con le schede AE. In caso di Aree di assistenza alla popolazione in locali chiusi, questi devono essere rilevati con le schede di rilievo ES.

#### ✓ Accesso alle AE:

- non è individuato il nodo di accesso all'AE XX
- non è individuata l'AC o le AC di accesso all'AE XX
- Le AE devono avere un solo accesso principale

#### ✓ Superficie della AE:

- la superficie della AE XX comprende la superficie di sedime dell'ES/AS/US XX
- la superficie dell'AE comprende l'area di sedime della strada che la attraversa: suddividere l'area in 2 parti escludendo la superficie carrabile

#### ✓ Interferenza su AE:

non sono indicate le interferenze ES/AS/US XX

#### 5. ID 36c Shapefile CL\_AS

#### ✓ Struttura dello shapefile:

- manca il campo cod\_prov/cod\_com/ID\_aggr/ID\_AS
- il campo XXXX non è ben compilato
- gli identificativi ID\_AS non sono univoci

#### ✓ Individuazione degli AS:

- manca l'AS XX a cui appartengono l'ES XX
- non sono rappresentate tutte le US/ES presenti nell'AS XX
- eliminare gli AS di US isolate
- eliminare gli AS di ES isolati
- eliminare le corti o i vuoti interni all'AS

#### 6. ID 36d Shapefile CL\_ES

#### Struttura dello shapefile:

- manca il campo
- > cod\_prov/cod\_com/ID\_aggr/ID\_unit/ID\_ES
  - il campo XXXX non è ben compilato
- gli identificativi ID\_ES non sono univoci

#### ✓ Rappresentazione degli ES

- i poligoni di alcuni ES appartenenti agli AS non ricalcano perfettamente i poligoni degli AS

#### ✓ Accesso all'ES:

- non è individuato il nodo di accesso all'ES XX
- non è individuata l'AC o le AC di accesso all'ES XX

#### 7. ID 36e Shapefile CL US

#### ✓ Struttura dello shapefile:

- manca il campo
- > cod\_prov/cod\_com/ID\_aggr/ID\_unit/ID\_US
  - il campo XXXX non è ben compilato
  - gli identificativi ID\_ES non sono univoci
- ✓ Rappresentazione delle US:

Modificare lo shapefile come indicato

- non corrisponde la rappresentazione dell'US XX con il dato della tipologia (fronte) inserito nel database
- la rappresentazione dell'US XX non corrisponde a quella dell'AS XX (i poligoni di alcune US appartenenti agli AS non ricalcano perfettamente i poligoni degli AS)
- verificare l'interferenza delle US rispetto ad AC e AE
- Le US interferenti su un'AE devono essere rappresentate come le US interferenti su un'AC
- Individuazione delle US:
  - Eliminare le US di ES

#### ID 36f Database CL db.mdb

- Tabella Indice:
  - soggetto realizzatore: deve essere il professionista
- Tabella scheda AC
  - n. XX di record e n. XX di elementi rappresentati
  - non è compilato il campo 30 (zona MS)
  - il campo 30 (zona MS) non è compilato correttamente
  - non è indicato il 'tipo instabilità' (campi da 31 a 35)
  - non è compilato il campo 39-40 (Falda Acque superficiali)
- Tabella scheda AE
  - n. XX di record e n. XX di elementi rappresentati
  - non è compilato il campo 23 (zona MS)
  - il campo 23 (zona MS) non è compilato correttamente
  - non è indicato il 'tipo instabilità' (campi da 24 a 28)
  - non è compilato il campo 32 (falda) e 33 (acque superficiali)
- Tabella scheda AS
  - n. XX di record e n. XX di elementi rappresentati
  - non è compilato il campo 40 (zona MS)
  - il campo 40 (zona MS) non è compilato correttamente
  - non è indicato il 'tipo instabilità' (campi da 41 a 45)

#### Tabella scheda ES

- n. XX di record e n. XX di elementi rappresentati
- non è compilato il campo 37 (zona MS)
- il campo 37 (zona MS) non è compilato correttamente
- non è indicato il 'tipo instabilità' (campi da 38 a 42)
- non è compilato il campo 48 (funzione strategica)
- il campo 48 (funzione strategica) non è compilato correttamente: l'ID\_edif XXX è stato associato a ES molto distanti tra loro (lo stesso identificativo deve riunire unità strutturali limitrofe e con la stessa funzione strategica). Nel caso in cui due ES svolgano la stessa funzione, assegnare l'identificativo XXX solo al prioritario e all'altro un identificativo diverso (ad esempio XXX). Si ricorda che l'ID edif 001 va assegnato a funzioni di Coordinamento degli interventi; l'ID\_edif 002 a funzioni di Soccorso sanitario, l'ID edif 003 a funzioni di Intervento operativo.
- Non è compilato il campo 49b

#### √ Tabella scheda US

- n. XX di record e n. XX di elementi rappresentati
- non è compilato il campo 37 (zona MS)
- il campo 37 (zona MS) non è compilato correttamente
- non è indicato il 'tipo instabilità' (campi da 38 a 42)
- ID 37 Lo shapefile CL\_XX non è correttamente georeferenziato

Gli shapefile sono correttamente georeferenziati ma, se sovrapposti ad una mappa di base, risultano spostati di diversi metri: verificare che la base dati, e di conseguenza gli shapefile, siano stati correttamente georeferenziati in WGS84UTM33N, con le dovute trasformazioni.

ID 39 Il collegamento tra CL\_XX e scheda\_XX:

- non è verificato/è verificato parzialmente

Modificare e completare il database come indicato

Modificare gli shapefile come indicato

10.

#### Segnalazioni e osservazioni (interventi a discrezione della Regione):

- Presenza o assenza di strutture di gestione dell'emergenza (campo 49)
- Piano di Protezione Civile: dalla relazione allegata allo studio, risulta che il Comune sia sprovvisto di Piano di Protezione Civile. Si ricorda che, in assenza di Piano, non è possibile applicare l'analisi della CLE: si chiede di chiarire quanto scritto nella Relazione.

#### Promemoria per la Segreteria Tecnica del DPC:

Si raccomanda di consegnare solo i file (shapefile/feature class, geodatabase, pdf) per i quali è richiesta l'integrazione. Per gli shapefile/features da integrare che, allo stato attuale, risultano presenti sia in SHP sia GDB, consegnare 1 solo formato. Per gli shapefile/feature già in possesso di questa amministrazione indicare quale versione considerare corretta (specificando se shapefile o feature class). Qualora il soggetto realizzatore intenda apportare modifiche aggiuntive (non previste nella presente) sui file menzionati e/o consegnare altri file (che andranno a sostituire i precedenti) è necessario precisare le modifiche apportate sui singoli file.

#### 14 Istruttoria Comune di Lentini

#### 14.1 Istruttoria di merito

I prodotti consegnati inseriti nella cartella "plot" riguardano 4 elaborati: la CGT, la carta delle MOPS e la carta delle frequenze, suddivise in 2 tavole, e le sezioni geologico-tecniche. Sono stati inoltre consegnati gli shp file relativi alla CGT "GeoTec" e a quella delle MOPS "MS1". Da un'analisi degli elaborati consegnati vengono sintetizzate le seguenti osservazioni riguardo la MS:

- Al fine di verificare la realizzazione del piano delle indagini previsto e la qualità delle nuove indagini effettuate, in
  questa fase sarebbe necessario osservare i report in pdf di tutte le nuove indagini inserite nello studio rispetto al
  livello1, con la loro esatta ubicazione riportata in una carta delle indagini dove le nuove vengono evidenziate rispetto
  alle precedenti del livello 1 ed etichettate con sigle che richiamino il pdf;
- Per comprendere come sono state distinte e delimitate le varie MOPS, tra gli elaborati è opportuno che vengano consegnate le rispettive colonne stratigrafiche rappresentative.

#### In merito agli elaborati consegnati:

- a) La carta geologico-tecnica non presenta differenze rispetto alla stessa del livello 1 ad eccezione della uniformità agli standard attuali e dell'inserimento di faglie attive e capaci, considerate non attive nel livello 1. Al fine di giustificare tale scelta è necessario consegnare anche la check-list prevista negli standard attuali, per verificare quali sono gli elementi che hanno permesso di considerare le strutture attive e capaci;
- b) Le sezioni geologico tecniche risultano essere 2 mentre le tracce sulla cgt sono 3. Tali sezioni non seguono le indicazioni delle linee guida sulla cgt quali la proiezione delle indagini, la scala grafica, la toponomastica, ecc... Inoltre è di difficile comprensione, dal punto di vista prettamente geologico, il significato di limiti eteropici tra coperture di diverso ambiente genetico deposizionale;
- Nella carta geologico-tecnica, per consentire la visualizzazione del dato relativo alla profondità della falda, il simbolo di questa (cerchio celestino) deve essere posizionato ad un livello superiore rispetto al simbolo indicante il sondaggio (cerchio rosso/verde);

d) Nella carta delle mops sono state inserite vaste aree soggette a liquefazione non giustificate dalla presenza di un dato riguardante la profondità della falda;

#### 14.2 Conformità agli standard di MS

- a) Geotec non è presente sotto le instabilità di versante. Queste vanno rappresentate con fondo trasparente in modo che appaia l'unità GT sottostante.
- b) Esiste una piccola sovrapposizione tra le instabilità di versante, tuttavia di estensione di poco conto e presente anche nella 3907, per cui anche non pregiudicherebbe il proseguimento dell'attività istruttoria.
- c) Alcuni poligoni di Instab si sovrappongono a poligoni di Stab (ID\_z=17 e 21 con ID\_i=1-4). L'estensione delle sovrapposizioni non è trascurabile e la sovrapposizione non è presente nello studio della 3907. È una non conformità che va necessariamente risolta.

#### 14.3 Conformità standard della CLE

- a) Il nodo tra AC54 e AC55 rappresenta un accesso ad AE08? Se sì, verificare che l'accesso si trovi realmente all'angolo dell'area. Se no, eliminare il nodo ed unire le AC54-55. Normalmente gli accessi non si trovano all'incrocio tra due strade, più spesso gli accessi posti in corrispondenza degli incroci sono degli errori. Si fa notare tale aspetto solo come "alert".
- b) È di difficile interpretazione il nodo tra le AC11-13. Si trova lì perché interseca il confine comunale? Se si, il confine comunale prosegue all'interno dell'area studiata e interseca anche le AC 12-21-27-28. Se invece non rappresenta l'incrocio con il confine comunale non ha motivo di essere rappresentato in quel punto (non è un incrocio di strade, non è un accesso). È corretto inserirlo là dove le due strade realmente si intersecano. Vanno di conseguenza modificati anche i relativi pdf (al 10.000 e al 2000) e schede degli elementi.
- c) La sovrapposizione con la MS1 non è corretta per molti degli elementi. Aprendo lo shapefile Instab e verificando la sovrapposizione con gli elementi molti di essi risultano in zona MS=2 nonostante ricadano in zona MS=3. Verificare a titolo esemplificativo gli ES600999-400001-40000, le AC42-62-37-13-15-14-12 e molte altre. Lo stesso vale per numerose US, AS e AE.

### 15 Istruttoria Comune di Oliveri

#### 15.1 Istruttoria di merito e conformità agli standard

I prodotti consegnati inseriti nella cartella "plot" riguardano 4 elaborati: la CGT, la carta delle MOPS, la carta delle frequenze e le sezioni geologico-tecniche. Sono stati inoltre consegnati gli shp file relativi alla CGT "GeoTec" e a quella delle MOPS "MS1". Da un'analisi degli elaborati consegnati vengono sintetizzate le seguenti osservazioni riguardo la MS:

Al fine di verificare la realizzazione del piano delle indagini previsto e la qualità delle nuove indagini effettuate, in
questa fase sarebbe necessario osservare i report in pdf di tutte le nuove indagini inserite nello studio rispetto al
livello1, con la loro esatta ubicazione riportata in una carta delle indagini dove le nuove vengono evidenziate rispetto
alle precedenti del livello 1 ed etichettate con sigle che richiamino il pdf;

 Per comprendere come sono state distinte e delimitate le varie MOPS, tra gli elaborati è opportuno che vengano consegnate le rispettive colonne stratigrafiche rappresentative.

In merito agli elaborati consegnati:

- a) Nelle sezioni-geologico-tecniche andrebbero riportati i limiti delle MOPS;
- b) Nelle 2 sezioni geologico-tecniche viene rappresentata una faglia attiva e capace. La sezione A-A' la FAC mette a contatto i substrati ALS e LP e non rigetta le due unità sovrastanti ISS e SW. Analogamente, nella sezione B'-B non si ha un rigetto nelle stesse unità.
- c) Al fine di giustificare l'inserimento della FAC è necessario consegnare anche la check-list prevista negli standard attuali, per verificare quali sono gli elementi che hanno permesso di considerare le strutture attiva e capace;
- d) Nella carta geologico-tecnica le unità geologico-tecniche inserite nel campo carta non corrispondono nella totalità a quelle indicate in legenda (verificare o correggere le sigle). Verificare di conseguenza anche le unità riportate nelle sezioni geologico-tecniche;
- e) Nella carta delle MOPS, come rappresentato dalla sezione A-A', la microzona 2001 in corrispondenza della FAC deve essere suddivisa in 2 microzone con substrati differenti;
- f) Nella carta delle MOPS verificare nel campo legenda le diciture per le zone stabili suscettibili di amplificazione stratigrafica distinguendole da quelle instabili per liquefazione (sostituire la descrizione inserendo solo dicitura "Zona 2099, Zona1, Zona 2 ...);
- g) Nella carta delle MOPS viene riportata in legenda una zona di attenzione per cedimenti differenziali (codice 3080) non riportata nel campo carta e non presente nello shape instab.
- h) Nella Carta delle MOPS non è stata riportata la microzona relativa all'unità GMes in affioramento lungo il bordo est dell'area di studio. È un errore considerarla uguale a quella che corre lungo la costa con in affioramento l'unità GPsp. Aggiungere un'ulteriore microzona;
- La microzona 2099 deve essere rivista in relazione alle possibili modifiche relative al punto d e nella descrizione delle unità geologiche andrebbero specificate quali sono le unità geologico-tecniche alterate/fratturate ad esse associate;

Nota: In alcuni casi gli elementi della MS (creste, orli di scarpata, tracce di faglia etc.) si confondono con gli elementi topografici della CTR. Si suggerisce di schiarire la CTR di fondo in fase di export del .pdf.

#### 15.2 Conformità agli standard di MS

- a) Piccole sovrapposizioni tra gli shape stab e Instab e al loro interno ma di estensione estremamente ridotta per cui accettabile:
- b) Nello shapefile Geoidr il campo ID\_gi non è stato compilato.
- Nelle sezioni geologico-tecniche il colore delle faglie deve rispettare gli standard (nere "non attive", rosse "attive e capaci");

#### 15.3 Conformità agli standard della CLE

- a) Le AC06-07 devono essere unite perché il nodo che le divide non ha motivo di essere rappresentato. Devono essere quindi modificati anche i plot (carta al 10.000 e stralci) e le schede relative alle AC interessate.
- b) La AC05 non ricade in zona instabile. Verificare il database CLE\_db.mdb e quanto riportato negli shapefile instab.